Direct and Inverse Results for Kantorovich Type Exponential Sampling Series

被引:27
作者
Angamuthu, Sathish Kumar [1 ]
Bajpeyi, Shivam [1 ]
机构
[1] Visvesvaraya Natl Inst Technol, Dept Math, Nagpur 440010, Maharashtra, India
关键词
Kantorovich type exponential sampling series; pointwise convergence; logarithmic modulus of continuity; mellin transform; inverse result; INTEGRABLE FUNCTIONS; APPROXIMATION; OPERATORS; VARIANT; THEOREM;
D O I
10.1007/s00025-020-01241-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we analyse the behaviour of the new family of Kantorovich type exponential sampling series. We derive the point-wise approximation theorem and Voronovskaya type theorem for the series(I-w(chi))(w>0). Further, we establish a representation formula and an inverse result of approximation for these operators. Finally, we give some examples of kernel functions to which the theory can be applied along with the graphical representation.
引用
收藏
页数:17
相关论文
共 45 条
[1]   On Kantorovich Modification of (p, q)-Bernstein Operators [J].
Acar, Tuncer ;
Aral, Ali ;
Mohiuddine, S. A. .
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3) :1459-1464
[2]   Stancu-Schurer-Kantorovich operators based on q-integers [J].
Acu, Ana Maria .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 :896-907
[3]   Approximation degree of a Kantorovich variant of Stancu operators based on Polya-Eggenberger distribution [J].
Agrawal, P. N. ;
Acu, Ana Maria ;
Sidharth, Manjari .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (01) :137-156
[4]   Bernstein-Schurer-Kantorovich operators based on q-integers [J].
Agrawal, P. N. ;
Finta, Zoltan ;
Kumar, A. Sathish .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 256 :222-231
[5]  
AGRAWAL PN, 1985, B UNIONE MAT ITAL, V4A, P323
[6]  
Anastassiou G.A., 2000, Approximation Theory
[7]   Approximation by generalized bivariate Kantorovich sampling type series [J].
Angamuthu, Sathish Kumar ;
Ponnaian, Devaraj .
JOURNAL OF ANALYSIS, 2019, 27 (02) :429-449
[8]   A Characterization of the Absolute Continuity in Terms of Convergence in Variation for the Sampling Kantorovich Operators [J].
Angeloni, Laura ;
Costarelli, Danilo ;
Vinti, Gianluca .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (02)
[9]  
Bardaro C., 2007, Sampling Theory in Signal and Image Processing, V6, P29
[10]   The Exponential Sampling Theorem of Signal Analysis and the Reproducing Kernel Formula in the Mellin Transform Setting [J].
Carlo Bardaro ;
Paul Leo Butzer ;
Ilaria Mantellini .
Sampling Theory in Signal and Image Processing, 2014, 13 (1) :35-66