BOOTSTRAPPING DEEP FEATURE HIERARCHY FOR PORNOGRAPHIC IMAGE RECOGNITION

被引:0
|
作者
Li, Kai [1 ]
Xing, Junliang [1 ]
Li, Bing [1 ]
Hu, Weiming [1 ,2 ]
机构
[1] Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techn, Inst Automat, Beijing 100190, Peoples R China
来源
2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2016年
关键词
Pornographic image recognition; deep learning; bootstrap;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Automatically recognizing pornographic images from the Web is a vital step to purify Internet environment. Inspired by the rapid developments of deep learning models, we present a deep architecture of convolutional neural network (CNN) for high accuracy pornographic image recognition. The proposed architecture is built upon existing CNNs which accepts input images of different sizes and incorporates features from different hierarchy to perform prediction. To effectively train the model, we propose a two-stage training strategy to learn the model parameters from scratch and end-to-end. During the training procedure, we also employ a hard negative sampling strategy to further reduce the false positive rate of the model. Experimental results on a large dataset demonstrate good performance of the proposed model and the effectiveness of our training strategies, with a considerable improvement over some traditional methods using hand-crafted features and deep learning method using mainstream CNN architecture.
引用
收藏
页码:4423 / 4427
页数:5
相关论文
共 50 条
  • [41] Additive deep feature optimization for semantic image retrieval
    Hussain, Saddam
    Zia, Muhammad Ahmad
    Arshad, Waqas
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 170
  • [42] Feature aware deep learning CT image reconstruction
    Matsuura, Masakazu
    Zhou, Jian
    Akino, Naruomi
    Yu, Zhou
    15TH INTERNATIONAL MEETING ON FULLY THREE-DIMENSIONAL IMAGE RECONSTRUCTION IN RADIOLOGY AND NUCLEAR MEDICINE, 2019, 11072
  • [43] Dimension reduction of image deep feature using PCA
    Ma, Ji
    Yuan, Yuyu
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2019, 63
  • [44] Enhanced Deep Feature Representation for Patent Image Classification
    Song, Gege
    Huang, Xianglin
    Cao, Gang
    Liu, Wei
    Zhang, Longjiang
    Yang, Lifang
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [45] A Deep Learning Approach for Retinal Image Feature Extraction
    Hoque, Mohammed Enamul
    Kipli, Kuryati
    Zulcaffle, Tengku Mohd Afendi
    Al-Hababi, Abdulrazak Yahya Saleh
    Mat, Dayang Azra Awang
    Sapawi, Rohana
    Joseph, Annie Anak
    PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY, 2021, 29 (04): : 2543 - 2563
  • [46] Offline and Online Deep Learning for Image Recognition
    Nguyen Huu Phong
    Ribeiro, Bernardete
    PROCEEDINGS OF 2017 4TH EXPERIMENT@INTERNATIONAL CONFERENCE (EXP.AT'17), 2017, : 171 - 175
  • [47] Convolutional Neural Networks based Pornographic Image Classification
    Zhou, KaiLong
    Zhou, Li
    Geng, Zhen
    Zhang, Jing
    Li, Xiao Guang
    2016 IEEE SECOND INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM), 2016, : 206 - 209
  • [48] Histopathological image recognition with discriminant-oriented extreme learning machine autoencoder based deep feature dimension reduction
    Cheng, Rong
    Zhao, Yu
    Bai, Yanping
    Hu, Hongping
    Xu, Ting
    Tan, Xiuhui
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (05)
  • [49] Multi-feature Deep Learning for Face Gender Recognition
    Jiang, Yuxin
    Li, Songbin
    Liu, Peng
    Dai, Qiongxing
    2014 IEEE 7TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC), 2014, : 507 - 511
  • [50] Aircarft Signal Feature Extraction and Recognition Based on Deep Learning
    Wang, Guanhua
    Zou, Cong
    Zhang, Chao
    Pan, Changyong
    Song, Jian
    Yang, Fang
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (09) : 9625 - 9634