On restrictions of Besov functions

被引:2
|
作者
Brasseur, Julien [1 ,2 ]
机构
[1] INRA, Unite BioSP, Avignon, France
[2] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Marseille, France
关键词
Besov spaces; Restriction to almost every; hyperplanes; Generalized smoothness; LOCAL GROWTH ENVELOPES; GENERALIZED SMOOTHNESS; CONTINUITY ENVELOPES; TRACE THEOREMS; SPACES; EMBEDDINGS; INTERPOLATION; ENTROPY;
D O I
10.1016/j.na.2018.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the smoothness of restrictions of Besov functions. It is known that for any f is an element of B-p,q(s) (R-N) with q <= p we have f(center dot, y) is an element of B-p,q(s) (R-d) for a e. y is an element of RN-d. We prove that this is no longer true when p < q. Namely, we construct a function f is an element of B-p,q(s) (R-N) such that f(center dot, y) (sic) B-p,q(s) (R-d) for a.e. y is an element of RN-d. We show that, in fact, f(center dot, y) belong to B-p,q((s, psi)) (R-d) for a.e. y is an element of RN-d, a Besov space of generalized smoothness, and, when q = infinity, we find the optimal condition on the function (psi) over bar for this to hold. The natural generalization of these results to Besov spaces of generalized smoothness is also investigated. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:197 / 225
页数:29
相关论文
共 50 条
  • [21] Asymptotic behaviour of Besov norms via wavelet type basic expansions
    Kamont, Anna
    ANNALES POLONICI MATHEMATICI, 2016, 116 (02) : 101 - 144
  • [22] Pointwise Characterizations of Besov and Triebel-Lizorkin Spaces with Generalized Smoothness and Their Applications
    Li, Zi Wei
    Yang, Da Chun
    Yuan, Wen
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (04) : 623 - 661
  • [23] Sharp embeddings of Besov spaces with logarithmic smoothness in sub-critical cases
    Dominguez, O.
    ANALYSIS MATHEMATICA, 2017, 43 (02) : 219 - 240
  • [24] Besov regularity in non-linear generalized functions
    Stevan Pilipović
    Dimitris Scarpalézos
    Jasson Vindas
    Monatshefte für Mathematik, 2023, 201 : 483 - 498
  • [25] Bloch, Besov and Dirichlet Spaces of Slice Hyperholomorphic Functions
    Castillo Villalba, C. Marco Polo
    Colombo, Fabrizio
    Gantner, Jonathan
    Oscar Gonzalez-Cervantes, J.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2015, 9 (02) : 479 - 517
  • [26] Radial growth of the derivatives of analytic functions in Besov spaces
    Dominguez, Salvador
    Girela, Daniel
    CONCRETE OPERATORS, 2020, 8 (01): : 1 - 12
  • [27] Integral Operators on the Besov Spaces and Subclasses of Univalent Functions
    Orouji, Zahra
    Ebadian, Ali
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2020, 17 (04): : 61 - 69
  • [28] Besov regularity in non-linear generalized functions
    Pilipovic, Stevan
    Scarpalezos, Dimitris
    Vindas, Jasson
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (02): : 483 - 498
  • [29] Bloch, Besov and Dirichlet Spaces of Slice Hyperholomorphic Functions
    C. Marco Polo Castillo Villalba
    Fabrizio Colombo
    Jonathan Gantner
    J. Oscar González-Cervantes
    Complex Analysis and Operator Theory, 2015, 9 : 479 - 517
  • [30] The Boundedness of Commutators of Singular Integral Operators with Besov Functions
    Gao, Xionglue
    Ma, Bolin
    JOURNAL OF FUNCTION SPACES AND APPLICATIONS, 2010, 8 (03): : 245 - 256