On restrictions of Besov functions

被引:2
|
作者
Brasseur, Julien [1 ,2 ]
机构
[1] INRA, Unite BioSP, Avignon, France
[2] Aix Marseille Univ, CNRS, Cent Marseille, I2M, Marseille, France
关键词
Besov spaces; Restriction to almost every; hyperplanes; Generalized smoothness; LOCAL GROWTH ENVELOPES; GENERALIZED SMOOTHNESS; CONTINUITY ENVELOPES; TRACE THEOREMS; SPACES; EMBEDDINGS; INTERPOLATION; ENTROPY;
D O I
10.1016/j.na.2018.01.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the smoothness of restrictions of Besov functions. It is known that for any f is an element of B-p,q(s) (R-N) with q <= p we have f(center dot, y) is an element of B-p,q(s) (R-d) for a e. y is an element of RN-d. We prove that this is no longer true when p < q. Namely, we construct a function f is an element of B-p,q(s) (R-N) such that f(center dot, y) (sic) B-p,q(s) (R-d) for a.e. y is an element of RN-d. We show that, in fact, f(center dot, y) belong to B-p,q((s, psi)) (R-d) for a.e. y is an element of RN-d, a Besov space of generalized smoothness, and, when q = infinity, we find the optimal condition on the function (psi) over bar for this to hold. The natural generalization of these results to Besov spaces of generalized smoothness is also investigated. (c) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:197 / 225
页数:29
相关论文
共 50 条
  • [1] Haar functions in weighted Besov and Triebel-Lizorkin spaces
    Malecka, Agnieszka
    JOURNAL OF APPROXIMATION THEORY, 2015, 200 : 1 - 27
  • [2] Besov Spaces, Multipliers and Univalent Functions
    Galanopoulos, Petros
    Girela, Daniel
    Martin, Maria J.
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2013, 7 (04) : 1081 - 1116
  • [3] Approximation and entropy numbers in Besov spaces of generalized smoothness
    Cobosa, Fernando
    Kuehn, Thomas
    JOURNAL OF APPROXIMATION THEORY, 2009, 160 (1-2) : 56 - 70
  • [4] HARMONIC FUNCTIONS REPRESENTATION OF BESOV-LIPSCHITZ FUNCTIONS ON NESTED FRACTALS
    Bodin, Mats
    Pietrusica-Paluba, Katarzyna
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (02) : 509 - 523
  • [5] A TRACE THEOREM FOR BESOV FUNCTIONS IN SPACES OF HOMOGENEOUS TYPE
    Andres Marcos, Miguel
    PUBLICACIONS MATEMATIQUES, 2018, 62 (01) : 185 - 211
  • [6] Rearrangements of functions in Besov spaces
    Cianchi, A
    MATHEMATISCHE NACHRICHTEN, 2001, 230 : 19 - 35
  • [7] On nuclearity of embeddings between Besov spaces
    Cobos, Fernando
    Dominguez, Oscar
    Kuehn, Thomas
    JOURNAL OF APPROXIMATION THEORY, 2018, 225 : 209 - 223
  • [8] On Besov spaces of logarithmic smoothness and Lipschitz spaces
    Cobos, Fernando
    Dominguez, Oscar
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 425 (01) : 71 - 84
  • [9] Rectangular differentiation of integrals of Besov functions
    Aimar, H
    Forzani, L
    Naibo, V
    MATHEMATICAL RESEARCH LETTERS, 2002, 9 (2-3) : 173 - 189
  • [10] ON THE COMPOSITION OF FUNCTIONS IN MULTIDIMENSIONAL BESOV SPACES
    Moussai, Madani
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (02): : 501 - 514