Prediction of Fatigue Life of Steels in Consideration of Defect-induced Crack Initiation and Propagation

被引:7
作者
Sakaguchi, Ryota [1 ]
Shiraiwa, Takayuki [1 ]
Chivavibul, Pornthep [1 ]
Enoki, Manabu [1 ]
机构
[1] Univ Tokyo, Dept Mat Engn, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1138656, Japan
关键词
fatigue; defects; crack initiation; crack propagation; stress concentration; COMPONENTS; INCLUSIONS; BEHAVIOR; GROWTH; MODEL;
D O I
10.2355/isijinternational.ISIJINT-2019-573
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
In the present study, the prediction of fatigue life by representing characteristic variations of defects with probability distribution functions was conducted by dividing the fatigue process into the crack initiation and crack propagation. Voids, hard inclusions (Al2O3) and soft inclusions (MnS) in steels were supposed as defects and two prediction models were proposed. Only the life of crack propagation was predicted by Paris law in initial defects model (model A) while the life of crack initiation as well as propagation was predicted by Tanaka-Mura model in crack initiation model (model B). The stress intensity factor using root area (projected square root area of defects) proposed by Murakami et al. was applied to Paris law in both models. The stress concentration due to defects and Taylor factor were applied to Tanaka-Mura model in the model B. These models were applied to four types of steels and the fatigue life was compared with the experimental results. In case of ductile cast iron including voids, the fatigue life predicted by both models was within the range of the experimental scattering. Although the fatigue life predicted by the model A was not consistent with the experimental results under high and low stress levels in case of Cr-Mo steel including MnS inclusions, the fatigue life predicted by the model B mostly showed a good agreement with experimental results, Therefore, it was demonstrated that the fatigue life prediction considering crack initiation showed higher precision than the prediction without crack initiation.
引用
收藏
页码:799 / 806
页数:8
相关论文
共 50 条
  • [21] Fatigue crack propagation life analysis of propeller
    Zhang, Ronglei
    Li, Xiang
    Li, Fanchun
    MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES, 2025, 53 (02) : 902 - 922
  • [22] A Transition Size of Dividing Crack Initiation and Propagation Phases and the Fatigue Total Life Prediction Approach
    Li, Chong
    Xie, Liyang
    Zhao, Haifeng
    Song, Jiaxin
    Zhao, Zhiqiang
    JOURNAL OF FAILURE ANALYSIS AND PREVENTION, 2019, 19 (05) : 1380 - 1388
  • [23] Fatigue crack initiation and propagation under cyclic contact loading
    Fajdiga, G.
    Sraml, M.
    ENGINEERING FRACTURE MECHANICS, 2009, 76 (09) : 1320 - 1335
  • [24] Fatigue crack initiation life prediction for aluminium alloy 7075 using crystal plasticity finite element simulations
    Li, Ling
    Shen, Luming
    Proust, Gwenaelle
    MECHANICS OF MATERIALS, 2015, 81 : 84 - 93
  • [25] Analysis of tooth root three-dimensional fatigue crack initiation, propagation, and fatigue life for spur gear transmission
    Zhang, Ting
    Lin, Tengjiao
    Liu, Yixian
    Chen, Bingkui
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2024, 134
  • [26] Pore-based prediction of crack initiation life in very-high-cycle fatigue
    Zhang, Ningyu
    Liu, Wenqi
    Shi, Tao
    Sun, Jingyu
    Qian, Guian
    INTERNATIONAL JOURNAL OF FATIGUE, 2025, 190
  • [27] Effect of defect shape on rolling contact fatigue crack initiation and propagation in high strength steel
    Makino, T.
    Neishi, Y.
    Shiozawa, D.
    Kikuchi, S.
    Okada, S.
    Kajiwara, K.
    Nakai, Y.
    INTERNATIONAL JOURNAL OF FATIGUE, 2016, 92 : 507 - 516
  • [28] Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation
    Shiraiwa, Takayuki
    Briffod, Fabien
    Enoki, Manabu
    MATERIALS, 2023, 16 (04)
  • [29] Crack initiation and early propagation in case hardened sintered PM steels under cyclic load
    Holmberg, Anders
    Wiklund, Urban
    Isaksson, Per
    Rudolphi, Asa Kassman
    POWDER METALLURGY, 2023, 66 (02) : 164 - 175
  • [30] Fatigue crack initiation and vibration prediction life of turbine blade
    Lecheb, S.
    Djedid, T.
    Chellil, A.
    Nour, A.
    Cherigui, M.
    Kebir, H.
    2013 5TH INTERNATIONAL CONFERENCE ON MODELING, SIMULATION AND APPLIED OPTIMIZATION (ICMSAO), 2013,