Experimental study on interlaminar strength & high velocity impact response of carbon nanotube deposited glass fiber composites

被引:1
|
作者
Haghbin, Amin [2 ]
Naderi, Aliasghar [1 ]
Mokhtari, S. Abolfazl [1 ]
机构
[1] Imam Ali Univ, Flight & Engn Dept, Imam Khomeini St,POB 13178-93471, Tehran, Iran
[2] Imam Ali Univ, Fac Engn, Tehran, Iran
关键词
Fiber-reinforced composites; Carbon nanotubes; Electrophoretic deposition; High velocity impact; Interphase; ELECTROPHORETIC DEPOSITION; FIBER/EPOXY COMPOSITE; SHEAR-STRENGTH; PERFORMANCE; PROJECTILES; BEHAVIOR; STRAIN;
D O I
10.1007/s40430-022-03881-5
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Carbon Nanotubes (CNTs) in the fabrication of Glass Fiber-Reinforced Polymers (GFRPs) are applied through Electrophoretic Deposition (EPD) technique to improve their interlaminar shear strength and high velocity impact response. EPD is utilized to insert CNTs on the surface of Glass fibers (GFs), performing as fuzzy fibers in the GFRP's interphase. This achievement improved the load transfer capacity of composite, especially in out-of-plane and high-rate loadings. So, high velocity impact experiments with blunt and ogival projectiles are applied to investigate the CNTs position on the impact response of GFRPs. Experimental studies revealed the supremacy of EPD to improve the mechanical performance of specimen regarding simple GFRP and also conventional specimen in which CNTs just mixed in the entire matrix. The interlaminar shear strength of GFRPs is enhanced by 42% in EPD specimens. Using various lay-ups in fabrication shows that CNT deposited layers in the core of simple layers demonstrated highest deflection before failure in short beam test. EPD of CNTs improved the ballistic limit and impact energy absorption of specimens by 45% & 20% regarding simple control GFRPs and 35% & 16% regarding conventional specimen, respectively.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Experimental study on interlaminar strength & high velocity impact response of carbon nanotube deposited glass fiber composites
    Amin Haghbin
    Aliasghar Naderi
    S. Abolfazl Mokhtari
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44
  • [2] Role of processing on interlaminar shear strength enhancement of epoxy/glass fiber/multi-walled carbon nanotube hybrid composites
    Chandrasekaran, V. C. S.
    Advani, S. G.
    Santare, M. H.
    CARBON, 2010, 48 (13) : 3692 - 3699
  • [3] An Experimental Study on the Low Velocity Impact Response of Repaired Carbon Fibre/Benzoxazine Composites
    Li, Na
    Sun, Lingfeng
    Chen, Dong
    FIBERS AND POLYMERS, 2019, 20 (01) : 129 - 137
  • [4] Experimental study on the high-velocity impact resistance of Vitrimer-based carbon fiber composites
    Lin, Ziyue
    Chen, Peng
    2024 3RD INTERNATIONAL CONFERENCE ON MATERIALS ENGINEERING AND APPLIED MECHANICS, ICMEAAE 2024, 2024, 2808
  • [5] Experimental investigation of high-velocity impact response and compression after impact behavior of continuous carbon fiber thermoplastic composites
    Wei, Gang
    Hao, Chenyu
    Jin, Hongwei
    Deng, Yunfei
    THIN-WALLED STRUCTURES, 2024, 205
  • [6] Interlaminar properties of carbon fiber composites with halloysite nanotube-toughened epoxy matrix
    Ye, Yueping
    Chen, Haibin
    Wu, Jingshen
    Chan, Chi Ming
    COMPOSITES SCIENCE AND TECHNOLOGY, 2011, 71 (05) : 717 - 723
  • [7] Interfacial mechanical properties of carbon nanotube-deposited carbon fiber epoxy matrix hierarchical composites
    Awan, Faizan S.
    Fakhar, Mohsin A.
    Khan, Laraib A.
    Zaheer, Usama
    Khan, Abdul F.
    Subhani, Tayyab
    COMPOSITE INTERFACES, 2018, 25 (08) : 681 - 699
  • [8] Monitoring of Impact Dynamics on Carbon Nanotube Multiscale Glass Fiber Composites by Means of Electrical Measurements
    Sanchez-Romate, Xoan F.
    Sbarufatti, Claudio
    Scaccabarozzi, Diego
    Cinquemani, Simone
    Jimenez-Suarez, Alberto
    Guemes, Alfredo
    Urena, Alejandro
    HEALTH MONITORING OF STRUCTURAL AND BIOLOGICAL SYSTEMS 2017, 2017, 10170
  • [9] Characterization of carbon nanotube enhanced interlaminar fracture toughness of woven carbon fiber reinforced polymer composites
    Chaudhry, M. S.
    Czekanski, A.
    Zhu, Z. H.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2017, 131 : 480 - 489
  • [10] Effect of polymer-grafted carbon nanofibers and nanotubes on the interlaminar shear strength and flexural strength of carbon fiber/epoxy multiscale composites
    Yao, Huichao
    Zhou, Guodong
    Wang, Weitao
    Peng, Mao
    COMPOSITE STRUCTURES, 2018, 195 : 288 - 296