TRANSFER LEARNING OF A CONVOLUTIONAL NEURAL NETWORK FOR HEP-2 CELL IMAGE CLASSIFICATION

被引:60
|
作者
Ha Tran Hong Phan [1 ]
Kumar, Ashnil [1 ]
Kim, Jinman [1 ]
Feng, Dagan [1 ]
机构
[1] Univ Sydney, Fac Engn & Informat Technol, BMIT Res Grp, Inst Biomed Engn & Technol, Sydney, NSW 2006, Australia
来源
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI) | 2016年
关键词
staining patterns; classification; indirect immunofluorescence; deep convolutional neural networks; transfer learning;
D O I
10.1109/ISBI.2016.7493483
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The recognition of the staining patterns of Human Epithelial-2 (HEp-2) cells in indirect immunofluorescence (IIF) images is essential for the diagnosis of several autoimmune diseases. The main challenge is the extraction and selection of the optimal feature set that not only represents the cells' characteristics, but also distinguishes between the classes of cell images with similar appearances. In this paper, we propose a system to classify HEp-2 cell images by applying transfer learning from a pre-trained deep convolutional neural network (CNN) to extract the generic features and then using a feature selection method to get the most relevant features for classification. Although the CNN was trained with a dataset very different from cell images, our system is capable of extracting important semantic features that represent a HEp-2 cell image. When evaluated on the ICPR2012 cell dataset, our method outperforms all other methods on the dataset of the 2012 competition, and demonstrates stable performance under different test protocols.
引用
收藏
页码:1208 / 1211
页数:4
相关论文
共 50 条
  • [1] HEp-2 Cell Image Classification With Deep Convolutional Neural Networks
    Gao, Zhimin
    Wang, Lei
    Zhou, Luping
    Zhang, Jianjia
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (02) : 416 - 428
  • [2] Deep Convolutional Neural Network Based HEp-2 Cell Classification
    Jia, Xi
    Shen, Linlin
    Zhou, Xiande
    Yu, Shiqi
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 77 - 80
  • [3] HEP-2 CELL CLASSIFICATION BASED ON A DEEP AUTOENCODING-CLASSIFICATION CONVOLUTIONAL NEURAL NETWORK
    Liu, Jingxin
    Xu, Bolei
    Shen, Linlin
    Garibaldi, Jon
    Qiu, Guoping
    2017 IEEE 14TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2017), 2017, : 1019 - 1023
  • [4] HEp-2 CELL CLASSIFICATION BY ADAPTIVE CONVOLUTIONAL LAYER BASED CONVOLUTIONAL NEURAL NETWORK
    Manju, C. C.
    Jose, M. Victor
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2019, 31 (06):
  • [5] HEp-2 Cell Classification using a Deep Neural Network Trained for Natural Image Classification
    Benligiray, Burak
    Akakin, Hatice Cinar
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 1361 - 1364
  • [6] HEp-2 Cell Classification Using an Ensemble of Convolutional Neural Networks
    Kasani, Payam Hosseinzadeh
    Kasani, Sara Hosseinzadeh
    Kim, Han Wool
    Cho, Kee Hyun
    Jang, Jae-Won
    Yun, Cheol-Heui
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 196 - 200
  • [7] HEp-2 Specimen Classification with Fully Convolutional Network
    Li, Yuexiang
    Shen, Linlin
    Zhou, Xiande
    Yu, Shiqi
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 96 - 100
  • [8] Revisiting HEp-2 Cell Image Classification
    Nigam, Ishan
    Agrawal, Shreyasi
    Singh, Richa
    Vatsa, Mayank
    IEEE ACCESS, 2015, 3 : 3102 - 3113
  • [9] Sparse Coding Induced Transfer learning for HEp-2 Cell Classification
    Liu, Anan
    Gao, Zan
    Hao, Tong
    Su, Yuting
    Yang, Zhaoxuan
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 (01) : 237 - 243
  • [10] Image Classification Based on transfer Learning of Convolutional neural network
    Wang, Yunyan
    Wang, Chongyang
    Luo, Lengkun
    Zhou, Zhigang
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 7506 - 7510