Linking soil N2O emissions with soil microbial community abundance and structure related to nitrogen cycle in two acid forest soils

被引:22
|
作者
Qin, Hongling [1 ]
Xing, Xiaoyi [1 ,2 ]
Tang, Yafang [2 ,3 ]
Hou, Haijun [1 ]
Yang, Jie [1 ]
Shen, Rong [1 ]
Zhang, Wenzhao [1 ]
Liu, Yi [1 ]
Wei, Wenxue [1 ]
机构
[1] Chinese Acad Sci, Inst Subtrop Agr, Key Lab Agroecol Proc Subtrop Reg, Taoyuan Agroecosyst Res Stn, Changsha 410125, Hunan, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100000, Peoples R China
[3] Hubei Engn Univ, Coll Life Sci & Technol, Hubei Key Lab Qual Control Characterist Fruits &, Xiaogan 432000, Peoples R China
基金
中国国家自然科学基金;
关键词
N2O emission; Nitrification; Denitrification; Acid forest soil; Tree species; Seasonal change; AMMONIA OXIDATION; DENITRIFICATION; NITRIFICATION; BACTERIA; ARCHAEA; MOISTURE; FERTILIZATION; RESPOND; RATHER; IMPACT;
D O I
10.1007/s11104-018-3863-7
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
AimsTree species and seasonal change influence N2O flux and microbial communities, but the mechanisms are unclear. We studied N2O flux in soils planted with slash pine and oil-seed camellia trees. We sampled on typical days of the four seasons. We tested whether N-cycling communities respond more to tree species or seasonal change. We assessed how tree species affect N2O flux.MethodsWe used qPCR and RFLP to determine abundance and community composition of amoA-containing bacteria (AOB) and archaea (AOA), and denitrifiers that contain the narG, nirK, nirS, and nosZ genes.ResultsN(2)O flux rate and soil characteristics varied significantly between forest soils and sampling seasons. Abundance of all detected genes, but not of the nirS gene, was significantly affected by tree species. Differences in gene abundance between days in different seasons were found only for narG, nirK, and nosZ. Functional microbial community composition in the soil varied between the tree species for most of the genes studied, but varied, not significantly, slightly among sampling days. Differences in the abundance and community composition of nitrifiers and denitrifiers between tree species depended on soil concentration of NH4+, NO3-, and dissolved organic carbon (DOC). N2O flux rate was affected by community composition, but not abundance of nitrifiers and denitrifiers. Temperature, NO3-, and DOC concentrations significantly affected N2O flux.ConclusionsTree species influenced N2O flux more than seasonal change, by altering community composition and environmental factors rather than nitrifier/denitrifier abundance.
引用
收藏
页码:95 / 109
页数:15
相关论文
共 50 条
  • [21] Salinity decouples the relationships between microbial functional gene abundance and N2O emissions in subtropical agricultural soils
    Dong, Mingqiu
    Zuo, Hanling
    Tian, Xiaocen
    Zhou, Xiaoqi
    JOURNAL OF SOILS AND SEDIMENTS, 2024, 24 (02) : 808 - 818
  • [22] PROCESSES REGULATING SOIL EMISSIONS OF NO AND N2O IN A SEASONALLY DRY TROPICAL FOREST
    DAVIDSON, EA
    MATSON, PA
    VITOUSEK, PM
    RILEY, R
    DUNKIN, K
    GARCIAMENDEZ, G
    MAASS, JM
    ECOLOGY, 1993, 74 (01) : 130 - 139
  • [23] Effect of soil aggregate size and dicyandiamide on N2O emissions and ammonia oxidizer abundance in a grazed pasture soil
    Robinson, A.
    Di, H. J.
    Cameron, K. C.
    Podolyan, A.
    SOIL USE AND MANAGEMENT, 2014, 30 (02) : 231 - 240
  • [24] Dinitrogen and N2O emissions in arable soils:: Effect of tillage, N source and soil moisture
    Liu, Xuejun J.
    Mosier, Arvin R.
    Halvorson, Ardell D.
    Reule, Curtis A.
    Zhang, Fusuo S.
    SOIL BIOLOGY & BIOCHEMISTRY, 2007, 39 (09) : 2362 - 2370
  • [25] The effect of soil pH and dicyandiamide (DCD) on N2O emissions and ammonia oxidiser abundance in a stimulated grazed pasture soil
    Aimee Robinson
    Hong Jie Di
    Keith C. Cameron
    Andriy Podolyan
    Jizheng He
    Journal of Soils and Sediments, 2014, 14 : 1434 - 1444
  • [26] Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH
    Aamer, Muhammad
    Shaaban, Muhammad
    Hassan, Muhammad Umair
    Huang Guoqin
    Liu Ying
    Tang Hai Ying
    Rasul, Fand
    Ma Qiaoying
    Li Zhuanling
    Rasheed, Adnan
    Peng, Zhang
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2020, 255
  • [27] Relationship between N2O and NO emission potentials and soil properties in Japanese forest soils
    Nishina, Kazuya
    Takenaka, Chisato
    Ishizuka, Shigehiro
    SOIL SCIENCE AND PLANT NUTRITION, 2009, 55 (01) : 203 - 214
  • [28] Fluxes of NO and N2O from temperate forest soils: impact of forest type, N deposition and of liming on the NO and N2O emissions
    K. Butterbach-Bahl
    R. Gasche
    L. Breuer
    H. Papen
    Nutrient Cycling in Agroecosystems, 1997, 48 : 79 - 90
  • [29] Fluxes of NO and N2O from temperate forest soils: impact of forest type, N deposition and of liming on the NO and N2O emissions
    ButterbachBahl, K
    Gasche, R
    Breuer, L
    Papen, H
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 1997, 48 (1-2) : 79 - 90
  • [30] Microbially mediated mechanisms underlie the increased soil N2O emissions under nitrogen fertilization in purple soil
    Liu, Yuanyuan
    Chen, Yuanxue
    Duan, Pengpeng
    Lu, Huabin
    Gao, Yujing
    Xu, Kaiwei
    APPLIED SOIL ECOLOGY, 2024, 204