Improving yield potential in crops under elevated CO2: integrating the photosynthetic and nitrogen utilization efficiencies

被引:96
|
作者
Kant, Surya [1 ]
Seneweera, Saman [2 ]
Rodin, Joakim [3 ]
Materne, Michael [1 ]
Burch, David [1 ]
Rothstein, Steven J. [4 ]
Spangenberg, German [3 ,5 ]
机构
[1] Dept Primary Ind, Biosci Res Div, Horsham, Vic 3400, Australia
[2] Univ Melbourne, Dept Agr & Food Syst, Horsham, Vic, Australia
[3] Victorian AgriBiosci Ctr, Biosci Res Div, Dept Primary Ind, Bundoora, Vic, Australia
[4] Univ Guelph, Dept Mol & Cellular Biol, Coll Biol Sci, Guelph, ON N1G 2W1, Canada
[5] La Trobe Univ, Bundoora, Vic, Australia
来源
FRONTIERS IN PLANT SCIENCE | 2012年 / 3卷
关键词
photosynthesis; nitrogen use efficiency; Rubisco; carbon; nitrogen; elevated CO2; yield; CYTOSOLIC GLUTAMINE-SYNTHETASE; CARBON-DIOXIDE; ATMOSPHERIC CO2; STOMATAL CONDUCTANCE; ARABIDOPSIS-THALIANA; C-4; PHOTOSYNTHESIS; ENRICHMENT FACE; GENE-EXPRESSION; GRAIN QUALITY; ROOT-SYSTEM;
D O I
10.3389/fpls.2012.00162
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO2 levels have linearly increased. Developing crop varieties with increased utilization of CO2 for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO2 and achieve higher food production. The primary effects of elevated CO2 levels in most crop plants, particularly C-3 plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO2. The yield potential of C-3 crops is limited by their capacity to exploit sufficient carbon. The "C fertilization" through elevated CO2 levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO2 and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO2, raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO2 levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO2 levels.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Warm air temperatures increase photosynthetic acclimation to elevated CO2 concentrations in rice under field conditions
    Yuan, Manman
    Cai, Chuang
    Wang, Xiaozhong
    Li, Gang
    Wu, Gang
    Wang, Jiabao
    Geng, Wei
    Liu, Gang
    Zhu, Jianguo
    Sun, Yixiang
    FIELD CROPS RESEARCH, 2021, 262
  • [32] Elevated CO2 Increases Nitrogen Fixationat the Reproductive Phase Contributing to Various Yield Responses of Soybean Cultivars
    Li, Yansheng
    Yu, Zhenhua
    Liu, Xiaobing
    Mathesius, Ulrike
    Wang, Guanghua
    Tang, Caixian
    Wu, Junjiang
    Liu, Judong
    Zhang, Shaoqing
    Jin, Jian
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [33] Sites of Action of Elevated CO2 on Leaf Development in Rice: Discrimination between the Effects of Elevated CO2 and Nitrogen Deficiency
    Tsutsumi, Koichi
    Konno, Masae
    Miyazawa, Shin-Ichi
    Miyao, Mitsue
    PLANT AND CELL PHYSIOLOGY, 2014, 55 (02) : 258 - 268
  • [34] Impact of elevated levels of CO2 and O3 on the yield and photosynthetic capabilities of Brassica napus
    Berner, J. M.
    Maliba, B.
    Inbaraj, P.
    AGRICULTURE AND CLIMATE CHANGE - ADAPTING CROPS TO INCREASED UNCERTAINTY (AGRI 2015), 2015, 29 : 255 - 255
  • [35] Response of potato to elevated CO2 under short days: Growt physiological parameters and tuber yield
    Minhas, J. S.
    Kumar, Prince
    Kumar, Devendra
    Dua, V. K.
    Gupta, Y. K.
    INDIAN JOURNAL OF HORTICULTURE, 2018, 75 (01) : 82 - 86
  • [36] Impacts of elevated atmospheric CO2 on nutrient content of important food crops
    Dietterich, Lee H.
    Zanobetti, Antonella
    Kloog, Itai
    Huybers, Peter
    Leakey, Andrew D. B.
    Bloom, Arnold J.
    Carlisle, Eli
    Fernando, Nimesha
    Fitzgerald, Glenn
    Hasegawa, Toshihiro
    Holbrook, N. Michele
    Nelson, Randall L.
    Norton, Robert
    Ottman, Michael J.
    Raboy, Victor
    Sakai, Hidemitsu
    Sartor, Karla A.
    Schwartz, Joel
    Seneweera, Saman
    Usui, Yasuhiro
    Yoshinaga, Satoshi
    Myers, Samuel S.
    SCIENTIFIC DATA, 2015, 2
  • [37] Effect of Nitrogen and Shade on Photosynthetic Gas Exchange and Productivity of Wheat Under Elevated Atmospheric CO2 Concentration
    Zhang X.-C.
    Yu X.-F.
    Hou H.-Z.
    Wang H.-L.
    Ma Y.-F.
    Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 2017, 87 (3) : 965 - 974
  • [38] The determiner of photosynthetic acclimation induced by biochemical limitation under elevated CO2 in japonica rice
    Yang, Kai
    Huang, Yao
    Yang, Jingrui
    Yu, Lingfei
    Hu, Zhenghua
    Sun, Wenjuan
    Zhang, Qing
    JOURNAL OF PLANT PHYSIOLOGY, 2023, 280
  • [39] Growth, morphological and photosynthetic characteristics, antioxidant capacity, biomass yield and water use efficiency of Gynura bicolor DC exposed to super-elevated CO2
    Wang, Minjuan
    Dong, Chen
    Fu, Yuming
    Liu, Hong
    ACTA ASTRONAUTICA, 2015, 114 : 138 - 146
  • [40] Availability of soil nitrogen and phosphorus under elevated [CO2] and temperature in the Taihu Lake region, China
    Zhang, Yong
    Chen, Xiaomin
    Zhang, Congcong
    Pan, Genxing
    Zhang, Xuhui
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2014, 177 (03) : 343 - 348