Improving yield potential in crops under elevated CO2: integrating the photosynthetic and nitrogen utilization efficiencies

被引:95
|
作者
Kant, Surya [1 ]
Seneweera, Saman [2 ]
Rodin, Joakim [3 ]
Materne, Michael [1 ]
Burch, David [1 ]
Rothstein, Steven J. [4 ]
Spangenberg, German [3 ,5 ]
机构
[1] Dept Primary Ind, Biosci Res Div, Horsham, Vic 3400, Australia
[2] Univ Melbourne, Dept Agr & Food Syst, Horsham, Vic, Australia
[3] Victorian AgriBiosci Ctr, Biosci Res Div, Dept Primary Ind, Bundoora, Vic, Australia
[4] Univ Guelph, Dept Mol & Cellular Biol, Coll Biol Sci, Guelph, ON N1G 2W1, Canada
[5] La Trobe Univ, Bundoora, Vic, Australia
来源
关键词
photosynthesis; nitrogen use efficiency; Rubisco; carbon; nitrogen; elevated CO2; yield; CYTOSOLIC GLUTAMINE-SYNTHETASE; CARBON-DIOXIDE; ATMOSPHERIC CO2; STOMATAL CONDUCTANCE; ARABIDOPSIS-THALIANA; C-4; PHOTOSYNTHESIS; ENRICHMENT FACE; GENE-EXPRESSION; GRAIN QUALITY; ROOT-SYSTEM;
D O I
10.3389/fpls.2012.00162
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Increasing crop productivity to meet burgeoning human food demand is challenging under changing environmental conditions. Since industrial revolution atmospheric CO2 levels have linearly increased. Developing crop varieties with increased utilization of CO2 for photosynthesis is an urgent requirement to cope with the irreversible rise of atmospheric CO2 and achieve higher food production. The primary effects of elevated CO2 levels in most crop plants, particularly C-3 plants, include increased biomass accumulation, although initial stimulation of net photosynthesis rate is only temporal and plants fail to sustain the maximal stimulation, a phenomenon known as photosynthesis acclimation. Despite this acclimation, grain yield is known to marginally increase under elevated CO2. The yield potential of C-3 crops is limited by their capacity to exploit sufficient carbon. The "C fertilization" through elevated CO2 levels could potentially be used for substantial yield increase. Rubisco is the rate-limiting enzyme in photosynthesis and its activity is largely affected by atmospheric CO2 and nitrogen availability. In addition, maintenance of the C/N ratio is pivotal for various growth and development processes in plants governing yield and seed quality. For maximizing the benefits of elevated CO2, raising plant nitrogen pools will be necessary as part of maintaining an optimal C/N balance. In this review, we discuss potential causes for the stagnation in yield increases under elevated CO2 levels and explore possibilities to overcome this limitation by improved photosynthetic capacity and enhanced nitrogen use efficiency. Opportunities of engineering nitrogen uptake, assimilatory, and responsive genes are also discussed that could ensure optimal nitrogen allocation toward expanding source and sink tissues. This might avert photosynthetic acclimation partially or completely and drive for improved crop production under elevated CO2 levels.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Effect of panicle removal on photosynthetic acclimation under elevated CO2 in rice
    Shimono, H.
    Suzuki, K.
    Aoki, K.
    Hasegawa, T.
    Okada, M.
    PHOTOSYNTHETICA, 2010, 48 (04) : 530 - 536
  • [22] Nitrogen deposition limits photosynthetic response to elevated CO2 differentially in a dioecious species
    Zhao, Hongxia
    Xu, Xiao
    Zhang, Yuanbin
    Korpelainen, Helena
    Li, Chunyang
    OECOLOGIA, 2011, 165 (01) : 41 - 54
  • [23] Nitrogen deposition limits photosynthetic response to elevated CO2 differentially in a dioecious species
    Hongxia Zhao
    Xiao Xu
    Yuanbin Zhang
    Helena Korpelainen
    Chunyang Li
    Oecologia, 2011, 165 : 41 - 54
  • [24] Nitrite utilization by Chaetoceros muelleri under elevated CO2 concentration
    Hu, Hanhua
    Zhang, Xu
    WORLD JOURNAL OF MICROBIOLOGY & BIOTECHNOLOGY, 2008, 24 (06): : 891 - 894
  • [25] Nitrite utilization by Chaetoceros muelleri under elevated CO2 concentration
    Hanhua Hu
    Xu Zhang
    World Journal of Microbiology and Biotechnology, 2008, 24 : 891 - 894
  • [26] Photosynthetic down-regulation under elevated CO2 exposure can be prevented by nitrogen supply in nodulated alfalfa
    Sanz-Saez, Alvaro
    Erice, Gorka
    Aranjuelo, Iker
    Nogues, Salvador
    Irigoyen, Juan Jose
    Sanchez-Diaz, Manuel
    JOURNAL OF PLANT PHYSIOLOGY, 2010, 167 (18) : 1558 - 1565
  • [27] Canopy height affects the allocation of photosynthetic carbon and nitrogen in two deciduous tree species under elevated CO2
    Byeon, Siyeon
    Song, Wookyung
    Park, Minjee
    Kim, Sukyung
    Kim, Seohyun
    Lee, HoonTaek
    Jeon, Jihyeon
    Kim, Kunhyo
    Lee, Minsu
    Lim, Hyemin
    Han, Sim-Hee
    Oh, Changyoung
    Kim, Hyun Seok
    JOURNAL OF PLANT PHYSIOLOGY, 2022, 268
  • [28] Constraints to nitrogen acquisition of terrestrial plants under elevated CO2
    Feng, Zhaozhong
    Ruetting, Tobias
    Pleijel, Hakan
    Wallin, Goeran
    Reich, Peter B.
    Kammann, Claudia I.
    Newton, Paul C. D.
    Kobayashi, Kazuhiko
    Luo, Yunjian
    Uddling, Johan
    GLOBAL CHANGE BIOLOGY, 2015, 21 (08) : 3152 - 3168
  • [29] Nitrogen limitation of microbial decomposition in a grassland under elevated CO2
    Hu, S
    Chapin, FS
    Firestone, MK
    Field, CB
    Chiariello, NR
    NATURE, 2001, 409 (6817) : 188 - 191
  • [30] Nitrogen limitation of microbial decomposition in a grassland under elevated CO2
    S. Hu
    F. S. Chapin
    M. K. Firestone
    C. B. Field
    N. R. Chiariello
    Nature, 2001, 409 : 188 - 191