Using the Octree Immersed Boundary Method for urban wind CFD simulations

被引:5
|
作者
Mitkov, R. [1 ]
Pantusheva, M. [1 ]
Naserentin, V [2 ,3 ]
Hristov, P. O. [1 ,6 ]
Wastberg, D. [4 ]
Hunger, F. [5 ]
Mark, A. [5 ]
Petrova-Antonova, D. [1 ]
Edelvik, F. [5 ]
Logg, A. [2 ]
机构
[1] Sofia Univ St Kliment Ohridski, GATE Inst, Sofia, Bulgaria
[2] Chalmers Univ Technol, Gothenburg, Sweden
[3] Aristotle Univ Thessaloniki, Thessaloniki, Greece
[4] Chalmers Industitekn, Gothenburg, Sweden
[5] Fraunhoffer Chalmers Res Inst Ind Math, Stockholm, Sweden
[6] Univ Liverpool, Inst Risk & Uncertainty, Liverpool, Merseyside, England
来源
IFAC PAPERSONLINE | 2022年 / 55卷 / 11期
基金
瑞典研究理事会; 欧盟地平线“2020”;
关键词
CFD; RANS; Turbulence; Urban wind study; Immersed boundary method; Verification and validation; FLOW; VERIFICATION; VALIDATION;
D O I
10.1016/j.ifacol.2022.08.069
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes the initial steps in a larger effort to perform verification and validation (V&V) of wind simulations in an urban environment. The presented work uses data from wind tunnel experiments on a simplified urban area to assess the performance of the steady-state RANS octree immersed boundary flow solver IBOFlow (R). Verification and validation activities are indispensable in computational modelling, because they address the issue about the trustworthiness of models directly. This is particularly so in the modelling of complex systems such as urban environments. The results of the early V&V work are presented, together with a discussion on different aspects of the experimental and modelling settings. A key contribution this work, which is planned as a first in a series of V&V publications, is the identification of concrete future actions to address the issues of trust in urban wind model predictions. Copyright (C) 2022 The Authors.
引用
收藏
页码:179 / 184
页数:6
相关论文
共 50 条
  • [21] Modeling snowdrift on roofs using Immersed Boundary Method and wind tunnel test
    Wang, Jianshuo
    Liu, Hongbo
    Xu, Dong
    Chen, Zhihua
    Ma, Kejian
    BUILDING AND ENVIRONMENT, 2019, 160
  • [22] CFD Modeling of Atmospheric Boundary Layer Simulations in Wind Tunnels
    Abubaker, Ahmed
    Kostic, Ivan
    Kostic, Olivera
    Stefanovic, Zoran
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2018, 25 (06): : 1595 - 1602
  • [23] Direct simulations on the electrophoretic motion of multiple charged particles using an immersed boundary method
    Kang, Sangmo
    COMPUTERS & FLUIDS, 2013, 73 : 10 - 23
  • [24] Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method
    Rey DeLeon
    Micah Sandusky
    Inanc Senocak
    Boundary-Layer Meteorology, 2018, 167 : 399 - 420
  • [25] Supercomputer simulations of fluid-structure interaction problems using an immersed boundary method
    Zhdanova N.S.
    Gorobets A.V.
    Abalakin I.V.
    2018, South Ural State University, Publishing Center (05) : 78 - 82
  • [26] Numerical Simulations of Flows over a Rotating Circular Cylinder Using the Immersed Boundary Method
    da Silva, Alice Rosa
    Neto, Aristeu da Silveira
    de Lima, Antonio Marcos G.
    Rade, Domingos Alves
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2011, 33 (01) : 99 - 106
  • [27] Simulations of self-propelled anguilliform swimming using the immersed boundary method in OpenFOAM
    Feng, Hui
    Wang, Zhaomeng
    Todd, Peter A.
    Lee, Heow Pueh
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2019, 13 (01) : 438 - 452
  • [28] Three-dimensional simulations of the cell growth and cytokinesis using the immersed boundary method
    Li, Yibao
    Kim, Junseok
    MATHEMATICAL BIOSCIENCES, 2016, 271 : 118 - 127
  • [29] Simulations of Turbulent Flow Over Complex Terrain Using an Immersed-Boundary Method
    DeLeon, Rey
    Sandusky, Micah
    Senocak, Inanc
    BOUNDARY-LAYER METEOROLOGY, 2018, 167 (03) : 399 - 420
  • [30] A Resolved CFD-DEM Approach Based on Immersed Boundary Method
    Mao J.
    Xiao J.
    Zhao L.
    Di Y.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2023, 57 (08): : 988 - 995