Investigation on dilution effect on laminar burning velocity of syngas premixed flames

被引:44
|
作者
Li, Hong-Meng [1 ]
Li, Guo-Xiu [1 ]
Sun, Zuo-Yu [1 ]
Zhou, Zi-Hang [1 ]
Li, Yuan [1 ]
Yuan, Ye [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Mech Elect & Control Engn, Beijing 100044, Peoples R China
关键词
Dilution effect; Laminar burning velocity; Thermal effect; Chemical effect; Third-body effect; HYDROGEN-AIR MIXTURES; MARKSTEIN LENGTHS; ELEVATED PRESSURES; NORMAL TEMPERATURE; SPHERICAL FLAMES; CO2; DILUTION; SPEEDS; COMBUSTION; INSTABILITIES; STABILITY;
D O I
10.1016/j.energy.2016.06.015
中图分类号
O414.1 [热力学];
学科分类号
摘要
To provide more insight into the laminar burning velocity reduction of diluted syngas premixed flames, the laminar burning velocities of diluted syngas premixed (H-2/CO/N-2/air and H-2/CO/CO2/air) laminar spherical flames were systematically and thoroughly investigated experimentally via Schlieren technology. In the present investigation, the volume fraction of H-2 was varied from 30% to 70%, the volume fraction of CO was varied from 30% to 70%, the volume fraction of CO2 was varied from 0% to 60%, and the equivalence ratio was varied from 0.7 to 1.0. In the present investigation, the effects of equivalence ratio, hydrogen fraction, and dilution fraction on the laminar burning velocities were studied. Compared to N-2 dilution, the laminar burning velocity reduction with CO2 dilution was analysed through the thermal, transport, and, chemical effects. In addition, the contributions of third-body and direction effects were also studied. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:146 / 152
页数:7
相关论文
共 50 条
  • [31] Temperature Dependence of Laminar Burning Velocity in Ammonia/Dimethyl Ether-air Premixed Flames
    Cai Tao
    Zhao Dan
    JOURNAL OF THERMAL SCIENCE, 2022, 31 (01) : 189 - 197
  • [32] Numerical study on laminar burning velocity and NO formation of premixed methane-hydrogen-air flames
    Hu, Erjiang
    Huang, Zuohua
    Zheng, Jianjun
    Li, Qianqian
    He, Jiajia
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (15) : 6545 - 6557
  • [33] Experimental and kinetic modeling study of laminar burning velocities of NH3/syngas/air premixed flames
    Han, Xinlu
    Wang, Zhihua
    He, Yong
    Zhu, Yanqun
    Cen, Kefa
    COMBUSTION AND FLAME, 2020, 213 : 1 - 13
  • [34] Experimental and kinetic studies of the effect of CO2 dilution on laminar premixed n-heptane/air flames
    Li, Gesheng
    Zhou, Mengni
    Zhang, Zunhua
    Liang, Junjie
    Ding, Haiqi
    FUEL, 2018, 227 : 355 - 366
  • [35] Laminar burning velocities and flame stability analysis of hydrogen/air premixed flames at low pressure
    Pareja, Jhon
    Burbano, Hugo J.
    Amell, Andres
    Carvajal, Julian
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (10) : 6317 - 6324
  • [36] Effects of initial mixture temperature and pressure on laminar burning velocity and Markstein length of ammonia/air premixed laminar flames
    Kanoshima, Ryuhei
    Hayakawa, Akihiro
    Kudo, Takahiro
    Okafor, Ekenechukwu C.
    Colson, Sophie
    Ichikawa, Akinori
    Kudo, Taku
    Kobayashi, Hideaki
    FUEL, 2022, 310
  • [37] Fundamental Combustion Characteristics of Lean and Stoichiometric Hydrogen Laminar Premixed Flames Diluted With Nitrogen or Carbon Dioxide
    Li, Hong-Meng
    Li, Guo-Xiu
    Sun, Zuo-Yu
    Zhou, Zi-Hang
    Li, Yuan
    Yuan, Ye
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2016, 138 (11):
  • [38] Study on the mechanism for laminar burning velocity enhancement with ethane addition in ammonia premixed flames
    Zhang, Siqi
    Yue, Wanying
    Zhang, Bin
    Xia, Yuanchen
    Wang, Boqiao
    Zhang, Jinnan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 101 : 959 - 971
  • [39] Experimental and numerical study of the laminar burning velocity of syngas in oxyfuel conditions
    Perin, R. T.
    Machado, I. M.
    Quezada, L. A.
    Bresolin, C. S.
    Pereira, F. M.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2024, 196 (12) : 1810 - 1835
  • [40] Effects of N2 dilution on laminar burning velocity, combustion characteristics and NOx emissions of rich CH4-air premixed flames
    Chu, Huaqiang
    Xiang, Longkai
    Meng, Shun
    Dong, Wenlong
    Gu, Mingyan
    Li, Zhihu
    FUEL, 2021, 284