Changes in Vascular Endothelial Growth Factor (VEGF) Induced by the Morris Water Maze Task

被引:7
|
作者
Oh, Dong Hoon [2 ,3 ]
Kim, Byung Woo [1 ]
Choi, Miyeon [1 ]
Lee, Garim [1 ]
Choi, June-Seek [4 ]
Son, Hyeon [1 ]
机构
[1] Hanyang Univ, Coll Med, Dept Biochem & Mol Biol, Seoul 133791, South Korea
[2] Hanyang Univ, Inst Mental Hlth, Seoul 133791, South Korea
[3] Hanyang Univ, Coll Med, Dept Neuropsychiat, Seoul 133791, South Korea
[4] Korea Univ, Dept Psychol, Seoul 136701, South Korea
基金
新加坡国家研究基金会;
关键词
learning; morris water maze; VEGF; FACTOR EXPRESSION; NEUROGENESIS; ACTIVATION; ELEMENT; MODULATION; NEURONS; SYSTEM; CORTEX; CAMP;
D O I
10.1007/s10059-012-2254-9
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The present study was undertaken to evaluate the effects on hippocampal vascular endothelial growth factor (VEGF) levels in rats when they experience hippocampal-dependent spatial learning via the Morris water maze (MWM) task. Rats underwent one of two different versions of the MWM: weak or intensive. After one day of intensive training, a highly sensitive enzyme-linked immunosorbent assay (ELISA) was used to measure VEGF protein levels in the hippocampus, cortex, and serum, and higher levels were found in the trained group compared to a naive control group. VEGF levels also increased in rats that swam only for durations equal to the intensive training periods. In contrast, rats trained under the weaker MWM paradigm for five days showed a decrease in hippocampal VEGF protein level. Mimicking increases in neuronal VEGF in the hippocampus by direct infusion of VEGF into CA1 resulted in up-regulation of the phosphorylation of the cAMP response element-binding (CREB) protein and the Ca2+/calmodulin-dependent protein kinases II (CaMKII). These results suggest that VEGF may be a physiological parameter involved in learning procedures that include physical activity.
引用
收藏
页码:295 / 300
页数:6
相关论文
共 50 条
  • [1] Heparin-Induced Changes of Vascular Endothelial Growth Factor (VEGF165) Structure
    Nemashkalova, Ekaterina L. L.
    Shevelyova, Marina P. P.
    Machulin, Andrey V. V.
    Lykoshin, Dmitry D. D.
    Esipov, Roman S. S.
    Deryusheva, Evgenia I. I.
    BIOMOLECULES, 2023, 13 (01)
  • [2] Vascular endothelial growth factor (VEGF) in endometriosis
    Donnez, J
    Smoes, P
    Gillerot, S
    Casanas-Roux, F
    Nisolle, M
    HUMAN REPRODUCTION, 1998, 13 (06) : 1686 - 1690
  • [3] Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF)
    Stiver, SI
    Dvorak, HF
    JOURNAL OF CLINICAL LIGAND ASSAY, 2000, 23 (03): : 193 - 205
  • [5] Vascular endothelial growth factor (VEGF) expression in plasmacytoma
    Paydas, S
    Zorludemir, S
    Baslamisli, F
    Tuncer, I
    LEUKEMIA & LYMPHOMA, 2002, 43 (01) : 139 - 143
  • [6] Vascular Endothelial Growth Factor (VEGF) in Neurodevelopmental Disorders
    Howell K.R.
    Armstrong J.
    Current Behavioral Neuroscience Reports, 2017, 4 (4) : 299 - 308
  • [7] Vascular endothelial growth factor (VEGF) - part 1: in physiology and pathophysiology
    Kajdaniuk, Dariusz
    Marek, Bogdan
    Borgiel-Marek, Halina
    Kos-Kudla, Beata
    ENDOKRYNOLOGIA POLSKA, 2011, 62 (05) : 444 - 455
  • [8] The neuroprotective function of vascular endothelial growth factor (VEGF)
    Góra-Kupilas, K
    Josko, J
    FOLIA NEUROPATHOLOGICA, 2005, 43 (01) : 31 - 39
  • [9] Inhibition of vascular endothelial growth factor (VEGF)-induced endothelial proliferation, arterial relaxation, vascular permeability and angiogenesis by dobesilate
    Angulo, Javier
    Peiro, Concepcion
    Romacho, Tania
    Fernandez, Argentina
    Cuevas, Begona
    Gonzalez-Corrochano, Rocio
    Gimenez-Gallego, Guillermo
    Saenz de Tejada, Inigo
    Sanchez-Ferrer, Carlos F.
    Cuevas, Pedro
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2011, 667 (1-3) : 153 - 159
  • [10] The role of KDR receptors in vascular endothelial growth factor (VEGF)-induced relaxation in rats
    Wei, W
    Jin, HK
    He, GW
    DRUG DEVELOPMENT RESEARCH, 2002, 55 (04) : 259 - 260