Investigation of the characteristics of particulate flows through fibrous filters using the lattice Boltzmann method

被引:21
|
作者
Rabiee, Marzie Babaie [1 ]
Talebi, Shahram [1 ]
Abouali, Omid [2 ]
Izadpanah, Ehsan [3 ]
机构
[1] Yazd Univ, Dept Mech Engn, Yazd, Iran
[2] Shiraz Univ, Dept Mech Engn, Shiraz, Iran
[3] Persian Gulf Univ, Dept Mech Engn, Bushehr, Iran
来源
PARTICUOLOGY | 2015年 / 21卷
关键词
Fibrous filter; Pressure drop factor; Capture efficiency; Lattice Boltzmann method; Random geometry; Ordered geometry; AEROSOL FILTRATION; VISCOUS-FLOW; PERMEABILITY; SIMULATIONS; COLLECTION; PRESSURE;
D O I
10.1016/j.partic.2014.11.010
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A fibrous filter is one of the most common systems used to separate suspended particles from air. Two important factors (i.e., the pressure drop and capture efficiency) are usually used to evaluate the performance of this type of filter. This study considers three two-dimensional arrangements of fibers (parallel, staggered, and random) to geometrically model fibrous media. The lattice Boltzmann method is employed to numerically simulate fluid flow through the filter. The Lagrangian form of the equation of motion of a particle is numerically solved to track the path of each particle in the flow field, where a one-way interaction between the fluid and particles is considered. The effects of pertinent parameters such as the fiber arrangement, solid volume fraction, particle-to-fiber diameter ratio, particle-to-fluid density ratio, Reynolds number, Stokes number, and size of the fibrous medium on the pressure drop and capture efficiency are studied. The obtained results are compared with existing empirical and theoretical findings and discussed. (C) 2015 Chinese Society of Particuology and Institute of Process Engineering, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:90 / 98
页数:9
相关论文
共 50 条
  • [21] GPU implementation of lattice Boltzmann method for flows with curved boundaries
    Zhou, Hao
    Mo, Guiyuan
    Wu, Feng
    Zhao, Jiapei
    Rui, Miao
    Cen, Kefa
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 225 : 65 - 73
  • [22] Cascaded lattice Boltzmann method for thermal flows on standard lattices
    Fei, Linlin
    Luo, Kai H.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2018, 132 : 368 - 377
  • [23] Thermal lattice Boltzmann method for multiphase flows
    Kupershtokh, Alexander L.
    Medvedev, Dmitry A.
    Gribanov, Igor I.
    PHYSICAL REVIEW E, 2018, 98 (02)
  • [24] Entropic Lattice Boltzmann Method for Multiphase Flows
    Mazloomi, A. M.
    Chikatamarla, S. S.
    Karlin, I. V.
    PHYSICAL REVIEW LETTERS, 2015, 114 (17)
  • [25] On the lattice Boltzmann method for multiphase flows with large density ratios
    Kim, Seung Hyun
    Pitsch, Heinz
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 303 : 19 - 27
  • [26] A rectangular lattice Boltzmann method for groundwater flows
    Zhou, Jian Guo
    MODERN PHYSICS LETTERS B, 2007, 21 (09): : 531 - 542
  • [27] A lattice Boltzmann method for axisymmetric thermocapillary flows
    Liu, Haihu
    Wu, Lei
    Ba, Yan
    Xi, Guang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 104 : 337 - 350
  • [28] Simulation of Thrombus Formation in Shear Flows Using Lattice Boltzmann Method
    Tamagawa, Masaaki
    Kaneda, Hiroaki
    Hiramoto, Miki
    Nagahama, Sho
    ARTIFICIAL ORGANS, 2009, 33 (08) : 604 - 610
  • [29] Prediction of Gas Flow Through Rough Microchannels Using a Lattice Boltzmann Method
    Raisee, M.
    Tamaddon, H.
    ADVANCED SCIENCE LETTERS, 2011, 4 (11-12) : 3439 - 3444
  • [30] Determination of permeability in fibrous porous media using the lattice Boltzmann method with application to PEM fuel cells
    Van Doorrnaal, Mark A.
    Pharoah, Jon G.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2009, 59 (01) : 75 - 89