Affirmative Solutions on Local Antimagic Chromatic Number

被引:19
|
作者
Lau, Gee-Choon [1 ]
Ng, Ho-Kuen [2 ]
Shiu, Wai-Chee [3 ,4 ]
机构
[1] Univ Teknol MARA, Fac Comp & Math Sci, Segamat Campus, Johor Baharu, Malaysia
[2] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
[3] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[4] Beijing Inst Technol, Coll Global Talents, Zhuhai, Peoples R China
关键词
Local antimagic labeling; Local antimagic chromatic number;
D O I
10.1007/s00373-020-02197-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge labeling of a connected graphG = (V,E) is said to be local antimagic if it is a bijectionf:E ->{1, horizontal ellipsis ,|E|} such that for any pair of adjacent verticesxandy,f+(x)not equal f+(y), where the induced vertex labelf+(x)= n-ary sumation f(e), witheranging over all the edges incident tox. The local antimagic chromatic number of G, denoted by chi(la)(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we give counterexamples to the lower bound of chi(la)(G proves O2) that was obtained in [Local antimagic vertex coloring of a graph, Graphs Combin. 33:275-285 (2017)]. A sharp lower bound of chi(la)(G proves On) and sufficient conditions for the given lower bound to be attained are obtained. Moreover, we settled Theorem 2.15 and solved Problem 3.3 in the affirmative. We also completely determined the local antimagic chromatic number of complete bipartite graphs.
引用
收藏
页码:1337 / 1354
页数:18
相关论文
共 27 条
  • [21] Local Antimagic Vertex Coloring of a Graph
    Arumugam, S.
    Premalatha, K.
    Baa, Martin
    Semanicova-Fenovcikova, Andrea
    GRAPHS AND COMBINATORICS, 2017, 33 (02) : 275 - 285
  • [22] Local Antimagic Vertex Coloring of a Graph
    S. Arumugam
    K. Premalatha
    Martin Bača
    Andrea Semaničová-Feňovčíková
    Graphs and Combinatorics, 2017, 33 : 275 - 285
  • [23] Local antimagic vertex coloring of a Myceilski of graphs
    Sethukkarasi, A.
    Vidyanandini, S.
    Nayak, Soumya Ranjan
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (04) : 1389 - 1401
  • [24] Local antimagic labeling of graphs
    Yu, Xiaowei
    Hu, Jie
    Yang, Donglei
    Wu, Jianliang
    Wang, Guanghui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 322 : 30 - 39
  • [25] Local antimagic vertex coloring for generalized friendship graphs
    Nalliah, M.
    Shankar, R.
    Wang, Tao-Ming
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (04) : 1063 - 1078
  • [26] On Local Antimagic Vertex Coloring for Complete Full t-ary Trees
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    Lai, Ruei-Ting
    Wang, Tao-Ming
    FUNDAMENTA INFORMATICAE, 2022, 185 (02) : 99 - 113
  • [27] Graceful Local Antimagic Labeling of Graphs: A Pattern Analysis Using Python']Python
    Alam, Luqman
    Semanicova-Fenovcikova, Andrea
    Popa, Ioan-Lucian
    SYMMETRY-BASEL, 2025, 17 (01):