Affirmative Solutions on Local Antimagic Chromatic Number

被引:20
作者
Lau, Gee-Choon [1 ]
Ng, Ho-Kuen [2 ]
Shiu, Wai-Chee [3 ,4 ]
机构
[1] Univ Teknol MARA, Fac Comp & Math Sci, Segamat Campus, Johor Baharu, Malaysia
[2] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
[3] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[4] Beijing Inst Technol, Coll Global Talents, Zhuhai, Peoples R China
关键词
Local antimagic labeling; Local antimagic chromatic number;
D O I
10.1007/s00373-020-02197-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge labeling of a connected graphG = (V,E) is said to be local antimagic if it is a bijectionf:E ->{1, horizontal ellipsis ,|E|} such that for any pair of adjacent verticesxandy,f+(x)not equal f+(y), where the induced vertex labelf+(x)= n-ary sumation f(e), witheranging over all the edges incident tox. The local antimagic chromatic number of G, denoted by chi(la)(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we give counterexamples to the lower bound of chi(la)(G proves O2) that was obtained in [Local antimagic vertex coloring of a graph, Graphs Combin. 33:275-285 (2017)]. A sharp lower bound of chi(la)(G proves On) and sufficient conditions for the given lower bound to be attained are obtained. Moreover, we settled Theorem 2.15 and solved Problem 3.3 in the affirmative. We also completely determined the local antimagic chromatic number of complete bipartite graphs.
引用
收藏
页码:1337 / 1354
页数:18
相关论文
共 8 条
[1]   Local Antimagic Vertex Coloring of a Graph [J].
Arumugam, S. ;
Premalatha, K. ;
Baa, Martin ;
Semanicova-Fenovcikova, Andrea .
GRAPHS AND COMBINATORICS, 2017, 33 (02) :275-285
[2]  
Chai FS, 2013, AUSTRALAS J COMB, V55, P131
[3]  
De Los Reyes JP, 2008, AUSTRALAS J COMB, V40, P293
[4]  
Haslegrave J, 2018, DISCRETE MATH THEOR, V20
[5]  
Kraitchik M, 1942, MAGIC SQUARES MATH R
[6]  
Lau G.C., 2018, ARXIV180504890
[7]  
Lau G.C., 2018, ARXIV180504801
[8]   ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF CYCLE-RELATED JOIN GRAPHS [J].
Lau, Gee-Choon ;
Shiu, Wai-Chee ;
Ng, Ho-Kuen .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) :133-152