High-accuracy low-cost privacy-preserving federated learning in IoT systems via adaptive perturbation

被引:5
|
作者
Liu, Tian [1 ,2 ]
Hu, Xueyang [1 ]
Xu, Hairuo [1 ]
Shu, Tao [1 ]
Nguyen, Diep N. [3 ]
机构
[1] Auburn Univ, Dept Comp Sci & Software Engn, Auburn, AL 36849 USA
[2] Zhejiang Lab, Hangzhou, Peoples R China
[3] Univ Technol Sydney, Sch Elect & Data Engn, Sydney, NSW, Australia
基金
美国国家科学基金会;
关键词
Federated learning; Privacy-preserving; IoT; Convergence performance; Information leakage; Local privacy;
D O I
10.1016/j.jisa.2022.103309
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the rapid development of the Internet of Things (IoT), federated learning (FL) has been widely used to obtain insights from collected data while preserving data privacy. Differential privacy (DP) is an additive noise scheme that has been widely studied as a privacy-preserving approach on FL. However, privacy protection under DP usually comes at the cost of model accuracy for the underlying FL process. In this paper, we propose a novel low-cost (for both communication and computational overhead) adaptive noise perturbation/masking scheme to protect FL clients' privacy without degrading the global model accuracy. In particular, we set the magnitude of the additive noise to adaptively change with the magnitude of the local model updates. Then, a direction-based filtering scheme is used to accelerate the convergence of the FL model. A maximum tolerable noise bound for local clients is derived using the central limit theorem (CLT). The designed noise maximizes privacy protection for clients while preserving the accuracy and convergence rate of the FL model , as a result of the noise cancelling out and forming a more concentrated distribution after the aggregation operation on the server. We theoretically prove that FL with the proposed noise perturbation scheme retains the same accuracy and convergence rate (O(1/T) for convex loss functions and O(1/root T) for non-convex loss functions) as that of non-private FL with SGD. We also evaluate the performance of the proposed scheme in terms of convergence behavior, computational efficiency, and privacy protection against state-of-the-art privacy inference attacks on real-world datasets. Experimental results show that FL with our proposed perturbation scheme outperforms DP in the accuracy and convergence rate of the FL model in both client dropout and non -client dropout scenarios. Compared with DP, our proposed scheme does not incur additional computational and communication overhead. Our approach provides DP-comparable or better effectiveness in defending against privacy attacks under the same global model accuracy.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Adaptive privacy-preserving federated learning
    Liu, Xiaoyuan
    Li, Hongwei
    Xu, Guowen
    Lu, Rongxing
    He, Miao
    PEER-TO-PEER NETWORKING AND APPLICATIONS, 2020, 13 (06) : 2356 - 2366
  • [2] Adaptive privacy-preserving federated learning
    Xiaoyuan Liu
    Hongwei Li
    Guowen Xu
    Rongxing Lu
    Miao He
    Peer-to-Peer Networking and Applications, 2020, 13 : 2356 - 2366
  • [3] Staged Noise Perturbation for Privacy-Preserving Federated Learning
    Li, Zhe
    Chen, Honglong
    Gao, Yudong
    Ni, Zhichen
    Xue, Huansheng
    Shao, Huajie
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2024, 9 (06): : 936 - 947
  • [4] Privacy-Preserving Asynchronous Grouped Federated Learning for IoT
    Zhang, Tao
    Song, Anxiao
    Dong, Xuewen
    Shen, Yulong
    Ma, Jianfeng
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (07): : 5511 - 5523
  • [5] Federated Learning for Privacy-Preserving Machine Learning in IoT Networks
    Anitha, G.
    Jegatheesan, A.
    2024 SECOND INTERNATIONAL CONFERENCE ON INTELLIGENT CYBER PHYSICAL SYSTEMS AND INTERNET OF THINGS, ICOICI 2024, 2024, : 338 - 342
  • [6] A framework for high-accuracy privacy-preserving mining
    Agrawal, S
    Haritsa, JR
    ICDE 2005: 21ST INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2005, : 193 - 204
  • [7] Privacy-Preserving Federated Learning via Disentanglement
    Zhou, Wenjie
    Li, Piji
    Han, Zhaoyang
    Lu, Xiaozhen
    Li, Juan
    Ren, Zhaochun
    Liu, Zhe
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 3606 - 3615
  • [8] A Privacy-Preserving Federated Learning Framework With Lightweight and Fair in IoT
    Chen, Yange
    Liu, Lei
    Ping, Yuan
    Atiquzzaman, Mohammed
    Mumtaz, Shahid
    Zhang, Zhili
    Guizani, Mohsen
    Tian, Zhihong
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (05): : 5843 - 5858
  • [9] Robust privacy-preserving federated learning framework for IoT devices
    Han, Zhaoyang
    Zhou, Lu
    Ge, Chunpeng
    Li, Juan
    Liu, Zhe
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (11) : 9655 - 9673
  • [10] Privacy-Preserving Asynchronous Federated Learning Framework in Distributed IoT
    Yan, Xinru
    Miao, Yinbin
    Li, Xinghua
    Choo, Kim-Kwang Raymond
    Meng, Xiangdong
    Deng, Robert H. H.
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (15) : 13281 - 13291