SERRIN'S OVERDETERMINED PROBLEM AND CONSTANT MEAN CURVATURE SURFACES

被引:32
作者
Del Pino, Manuel [1 ,2 ]
Pacard, Frank [3 ]
Wei, Juncheng [4 ]
机构
[1] Univ Chile, Dept Ingn Matemat, Santiago, Chile
[2] Univ Chile, UMI CNRS 2807, Ctr Modelamiento Matemat, Santiago, Chile
[3] Ecole Polytech, Ctr Mathemat Laurent Schwartz, UMR CNRS 7640, Palaiseau, France
[4] Univ British Columbia, Dept Math, Vancouver, BC, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
EMBEDDED MINIMAL-SURFACES; ELLIPTIC-EQUATIONS; CONJECTURE; HYPERSURFACES; SYMMETRY; INDEX;
D O I
10.1215/00127094-3146710
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For all N >= 9, we find smooth entire epigraphs in R-N, namely, smooth domains of the form Omega := {x is an element of R-N broken vertical bar X-N broken vertical bar > F(X-1, . . . , X-N-1)}, which are not half-spaces and in which a problem of the form Au f (u) = 0 in 2 has a positive, bounded solution with 0 Dirichlet boundary data and constant Neumann boundary data on partial derivative Omega. This answers negatively for large dimensions a question by Berestycki, Caffarelli, and Nirenberg. In 1971, Serrin proved that a bounded domain where such an overdetern2ined problem is solvable must be a ball, in analogy to a famous result by Alexandrov that states that an embedded compact surface with constant mean curvature (CMG) in Euclidean space must be a sphere. In lower dimensions we succeed in providing examples for domains whose boundary is close to large dilations of d given CMC surface where Serrin's overdetermined problem is solvable.
引用
收藏
页码:2643 / 2722
页数:80
相关论文
共 29 条
[1]   Entire solutions of semilinear elliptic equations in R3 and a conjecture of De Giorgi [J].
Ambrosio, L ;
Cabré, X .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (04) :725-739
[2]  
[Anonymous], VESTNIK LENINGRAD U
[3]   STABILITY OF HYPERSURFACES OF CONSTANT MEAN-CURVATURE IN RIEMANNIAN-MANIFOLDS [J].
BARBOSA, JL ;
DOCARMO, M ;
ESCHENBURG, J .
MATHEMATISCHE ZEITSCHRIFT, 1988, 197 (01) :123-138
[4]  
Berestycki H, 1997, COMMUN PUR APPL MATH, V50, P1089, DOI 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO
[5]  
2-6
[6]   MINIMAL CONES AND BERNSTEIN PROBLEM [J].
BOMBIERI, E ;
DEGIORGI, E ;
GIUSTI, E .
INVENTIONES MATHEMATICAE, 1969, 7 (03) :243-&
[7]  
Costa C J., 1984, Bol. Soc. Brasil. Mat, V15, P47, DOI [10.1007/BF02584707, DOI 10.1007/BF02584707]
[8]  
DeGiorgi E, 1979, P INT M RECENT METHO, P131
[9]  
del Pino M, 2013, J DIFFER GEOM, V93, P67
[10]   On De Giorgi's conjecture in dimension N ≥ 9 [J].
del Pino, Manuel ;
Kowalczyk, Michal ;
Wei, Juncheng .
ANNALS OF MATHEMATICS, 2011, 174 (03) :1485-1569