Studying the relationship between water-induced soil erosion and soil organic matter using Vis-NIR spectroscopy and geomorphological analysis: A case study in southern Italy

被引:97
|
作者
Conforti, Massimo [1 ]
Buttafuoco, Gabriele [1 ]
Leone, Antonio P. [2 ]
Aucelli, Pietro P. C. [3 ]
Robustelli, Gaetano [4 ]
Scarciglia, Fabio [4 ]
机构
[1] CNR, Inst Agr & Forest Syst Mediterranean ISAFOM, I-87036 Arcavacata Di Rende, CS, Italy
[2] CNR, Inst Agr & Forest Syst Mediterranean ISAFOM, Ercolano, NA, Italy
[3] Univ Naples Federico II, Dipartirnento DiSAm, I-80138 Naples, Italy
[4] Univ Calabria, Dipartimento Biol Ecol & Sci Terra DiBEST, Arcavacata Di Rende, CS, Italy
关键词
Soil erosion; Soil organic matter; Reflectance spectrometry; Partial least square regression analysis; Geostatistics; Southern Italy; INFRARED REFLECTANCE SPECTROSCOPY; LEAST-SQUARES REGRESSION; SPATIAL PREDICTION; CARBON CONTENT; QUANTITATIVE-ANALYSIS; SPECTRAL REFLECTANCE; CHEMICAL-PROPERTIES; SEDIMENT PRODUCTION; SURFACE CRUSTS; GULLY EROSION;
D O I
10.1016/j.catena.2013.06.013
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Soil erosion by water is the main cause of soil degradation in large areas of the Mediterranean belt. Soil erosion determines loss of surface horizon, which is rich in organic matter. The content of soil organic matter (SOM) is a key property for evaluating soil erosion and/or soil preservation and quality. Conventional methods to estimate quantitatively SOM content, based on conventional laboratory analyses, are costly and time consuming. An alternative approach to ascertain SOM content is based on the use of soil spectral reflectance, which has the advantage to be rapid, non-destructive and cost effective. In this study we focused on: (i) using of the laboratory-based, proximally sensed in the visible-near-infrared. (Vis-NIR, 400-2500 nm) spectral range to predict SOM content in the study area; (ii) combining soil spectroscopy and geostatistics for mapping SOM content; (iii) mapping zones affected by water erosion processes in the study area; and (iv) analyzing the relationship among soil erosion, SOM and soil spectral data. Areas affected by water erosion processes (sheet wash and/or rill and gully erosions) in the study area were detected through air-photo interpretation and field surveys. Topsoil samples from 215 locations in different soil types and erosion conditions were collected and each sample was air-dried and sieved at 2 mm and then split into two sub-samples: one was used for spectral measurements, while the other was analyzed to determine SOM content. Analysis of spectral curve showed that topsoil samples were spectrally separable on the basis of SOM content and of their erosion severity. Partial least squared regression (PLSR) analysis was applied to establish the relationships between spectral reflectance and SOM content. PLSR was performed on the calibration set including 161 of the 215 available samples, while 54 samples were used as validation set. The optimum number of factors to retain in the calibration model was determined by cross validation. The models were independently validated using the 54 validation soil samples. The results were satisfactory with high adjusted coefficient of determination (R-adj(2) = 0.84) and with a value of residual predictive deviation (RPD) more than 2.4. The results of this work suggest that laboratory reflectance spectroscopy in the Vis-NIR range coupled with a geostatistical analysis can be used as tools for predicting spectrally and mapping SOM. The relationship between water erosion processes and the spatial distribution of SOM, showed that: (i) zones with low content of SOM are affected by water erosion processes and (ii) water erosion affects more than 21% of the study area. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 58
页数:15
相关论文
共 50 条
  • [1] Estimation of soil organic matter in Cambisol soil using vis-NIR spectroscopy
    Gonzalez-Aguiar, Diana
    Colas-Sanchez, Ariany
    Rodriguez-Lopez, Oralia
    Luisa Alvarez-Vazquez, Delia
    Gattorno-Munoz, Sirley
    Chacon-Iznaga, Ahmed
    CENTRO AGRICOLA, 2020, 47 (03): : 23 - 32
  • [2] Soil Organic Matter Content Estimation Based on Soil Covariate and VIS-NIR Spectroscopy
    Ma Guolin
    Ding Jianli
    Zhang Zipeng
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (19)
  • [3] USING VIS-NIR SPECTROSCOPY TO ESTIMATE SOIL ORGANIC CONTENT
    Hu, Tao
    Qi, Kun
    Hu, Yi'na
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8263 - 8266
  • [4] Feasibility Analysis of Rapid Estimation of Soil Erosion Factor Using Vis-NIR Spectroscopy
    Yu Wu
    Jia Xiao-lin
    Chen Song-chao
    Zhou Lian-qing
    Shi Zhou
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38 (04) : 1076 - 1081
  • [5] Prediction of Soil Organic Matter by VIS-NIR Spectroscopy Using Normalized Soil Moisture Index as a Proxy of Soil Moisture
    Hong, Yongsheng
    Yu, Lei
    Chen, Yiyun
    Liu, Yanfang
    Liu, Yaolin
    Liu, Yi
    Cheng, Hang
    REMOTE SENSING, 2018, 10 (01)
  • [6] Estimation and Mapping of Soil Organic Matter Based on Vis-NIR Reflectance Spectroscopy
    Guo Yan
    Ji Wen-jun
    Wu Hong-hai
    Shi Zhou
    SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33 (04) : 1135 - 1140
  • [7] Exploring the Potential of vis-NIR Spectroscopy as a Covariate in Soil Organic Matter Mapping
    Yang, Meihua
    Chen, Songchao
    Guo, Xi
    Shi, Zhou
    Zhao, Xiaomin
    REMOTE SENSING, 2023, 15 (06)
  • [8] Estimation Method of VIS-NIR Spectroscopy for Soil Organic Matter Based on Sparse Networks
    Ran Si
    Ding Jianli
    Ge Xiangyu
    Liu Bohua
    Zhang Junyong
    LASER & OPTOELECTRONICS PROGRESS, 2020, 57 (24)
  • [9] Deep Learning Application for Predicting Soil Organic Matter Content by VIS-NIR Spectroscopy
    Xu, Zhe
    Zhao, Xiaomin
    Guo, Xi
    Guo, Jiaxin
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2019, 2019
  • [10] Prediction of soil organic carbon for different levels of soil moisture using Vis-NIR spectroscopy
    Nocita, Marco
    Stevens, Antoine
    Noon, Carole
    van Wesemael, Bas
    GEODERMA, 2013, 199 : 37 - 42