We are interested in this paper in recovering an harmonic function from the knowledge of Cauchy data on some part of the boundary. A new inversion method is introduced. It reduces the Cauchy problem resolution to the determination of the resolution of a sequence of well-posed problems. The sequence of these solutions is proved to converge to the Cauchy problem solution. The algorithm is implemented in the framework of boundary elements. Displayed numerical results highlight its accuracy, as well as its robustness to noisy data.
机构:
Laboratoire Encergétique Explosions Structures ENSI de Bourges, 18020 BOURGES Cedex, 10, Boulevard LahitolleLaboratoire Encergétique Explosions Structures ENSI de Bourges, 18020 BOURGES Cedex, 10, Boulevard Lahitolle
Delvare F.
Cimetière A.
论文数: 0引用数: 0
h-index: 0
机构:
Lab. de Modelisation Mecanique et de Mathematiques Appliquees Universite de Poitiers et E.N.S.M.A., Boulevard Marie et Pierre Curie Téléport 2, 86962 Futuroscope Chasseneuil CedexLaboratoire Encergétique Explosions Structures ENSI de Bourges, 18020 BOURGES Cedex, 10, Boulevard Lahitolle
Cimetière A.
Pons F.
论文数: 0引用数: 0
h-index: 0
机构:
Lab. de Modelisation Mecanique et de Mathematiques Appliquees Universite de Poitiers et E.N.S.M.A., Boulevard Marie et Pierre Curie Téléport 2, 86962 Futuroscope Chasseneuil CedexLaboratoire Encergétique Explosions Structures ENSI de Bourges, 18020 BOURGES Cedex, 10, Boulevard Lahitolle