Hierarchical Reinforcement Learning Framework towards Multi-agent Navigation

被引:0
|
作者
Ding, Wenhao [1 ]
Li, Shuaijun [2 ]
Qian, Huihuan [3 ]
Chen, Yongquan [3 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Chinese Univ Hong Kong, Shatin, Hong Kong, Peoples R China
[3] Chinese Univ Hong Kong Shenzhen, Shenzhen, Peoples R China
来源
2018 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO) | 2018年
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we propose a navigation algorithm oriented to multi-agent environment. This algorithm is expressed as a hierarchical framework that contains a Hidden Markov Model (HMM) and a Deep Reinforcement Learning (DRL) structure. For simplification, we term our method Hierarchical Navigation Reinforcement Network (HNRN). In high-level architecture, we train an HMM to evaluate the agents perception to obtain a score. According to this score, adaptive control action will be chosen. While in low-level architecture, two sub-systems are introduced, one is a differential target-driven system, which aims at heading to the target; the other is a collision avoidance DRL system, which is used for avoiding dynamic obstacles. The advantage of this hierarchical structure is decoupling the target-driven and collision avoidance tasks, leading to a faster and more stable model to be trained. The experiments indicate that our algorithm has higher learning efficiency and rate of success than traditional Velocity Obstacle (VO) algorithms or hybrid DRL method.
引用
收藏
页码:237 / 242
页数:6
相关论文
共 50 条
  • [1] Hierarchical multi-agent reinforcement learning
    Mohammad Ghavamzadeh
    Sridhar Mahadevan
    Rajbala Makar
    Autonomous Agents and Multi-Agent Systems, 2006, 13 : 197 - 229
  • [2] Hierarchical multi-agent reinforcement learning
    Ghavamzadeh, Mohammad
    Mahadevan, Sridhar
    Makar, Rajbala
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2006, 13 (02) : 197 - 229
  • [3] Towards a Distributed Framework for Multi-Agent Reinforcement Learning Research
    Zhou, Yutai
    Manuel, Shawn
    Morales, Peter
    Li, Sheng
    Pena, Jaime
    Allen, Ross
    2020 IEEE HIGH PERFORMANCE EXTREME COMPUTING CONFERENCE (HPEC), 2020,
  • [4] Inference-based Hierarchical Reinforcement Learning for Cooperative Multi-agent Navigation
    Xia, Lijun
    Yu, Chao
    Wu, Zifan
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 57 - 64
  • [5] Multi-agent dual actor-critic framework for reinforcement learning navigation
    Xiong, Fengguang
    Zhang, Yaodan
    Kuang, Xinhe
    He, Ligang
    Han, Xie
    APPLIED INTELLIGENCE, 2025, 55 (02)
  • [6] Reinforcement learning for multi-agent formation navigation with scalability
    Yalei Gong
    Hongyun Xiong
    MengMeng Li
    Haibo Wang
    Xiaohong Nian
    Applied Intelligence, 2023, 53 : 28207 - 28225
  • [7] Reinforcement learning for multi-agent formation navigation with scalability
    Gong, Yalei
    Xiong, Hongyun
    Li, Mengmeng
    Wang, Haibo
    Nian, Xiaohong
    APPLIED INTELLIGENCE, 2023, 53 (23) : 28207 - 28225
  • [8] Studies on hierarchical reinforcement learning in multi-agent environment
    Yu Lasheng
    Marin, Alonso
    Hong Fei
    Lin Jian
    PROCEEDINGS OF 2008 IEEE INTERNATIONAL CONFERENCE ON NETWORKING, SENSING AND CONTROL, VOLS 1 AND 2, 2008, : 1714 - 1720
  • [9] Multi-Agent Hierarchical Reinforcement Learning with Dynamic Termination
    Han, Dongge
    Boehmer, Wendelin
    Wooldridge, Michael
    Rogers, Alex
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 2006 - 2008
  • [10] Multi-agent hierarchical reinforcement learning for energy management
    Jendoubi, Imen
    Bouffard, Francois
    APPLIED ENERGY, 2023, 332