Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications

被引:258
作者
Li, Ming [1 ]
Liu, Qian [1 ]
Jia, Zhaojun [1 ]
Xu, Xuchen [1 ]
Cheng, Yan [1 ]
Zheng, Yufeng [1 ,2 ]
Xi, Tingfei [1 ]
Wei, Shicheng [1 ,3 ]
机构
[1] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Biomed Mat & Tissue Engn, Beijing 100871, Peoples R China
[2] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
[3] Peking Univ, Sch Stomatol, Dept Oral & Maxillofacial Surg, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
TITANIUM SUBSTRATE; GRAPHITE OXIDE; MECHANICAL-PROPERTIES; IN-VITRO; HYDROXYAPATITE; DEPOSITION; NANOCOMPOSITES; LAYER; BIOCOMPATIBILITY; CELLS;
D O I
10.1016/j.carbon.2013.09.080
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene oxide (GO) was firstly employed as nanoscale reinforcement fillers in hydroxyapatite (HA) coatings by a cathodic electrophoretic deposition process, and GO/HA coatings were fabricated on pure Ti substrate. The transmission electron microscopy observation and particle size analysis of the suspensions indicated that HA nanoparticles were uniformly decorated on GO sheets, forming a large GO/HA particle group. The addition of GO into HA coatings could reduce the surface cracks and increase the coating adhesion strength from 1.55 +/- 0.39 MPa (pure HA) to 2.75 +/- 0.38 MPa (2 wt.% GO/HA) and 3.3 +/- 0.25 MPa (5 wt.% GO/HA), respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that the GO/HA composite coatings exhibited higher corrosion resistance in comparison with pure HA coatings in simulated body fluid. In addition, superior (around 95% cell viability for 2 wt.% GO/HA) or comparable (80-90% cell viability for 5 wt.% GO/HA) in vitro biocompatibility were observed in comparison with HA coated and uncoated Ti substrate. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:185 / 197
页数:13
相关论文
共 67 条
[51]   Graphene-based composite materials [J].
Stankovich, Sasha ;
Dikin, Dmitriy A. ;
Dommett, Geoffrey H. B. ;
Kohlhaas, Kevin M. ;
Zimney, Eric J. ;
Stach, Eric A. ;
Piner, Richard D. ;
Nguyen, SonBinh T. ;
Ruoff, Rodney S. .
NATURE, 2006, 442 (7100) :282-286
[52]   Nano-Graphene Oxide for Cellular Imaging and Drug Delivery [J].
Sun, Xiaoming ;
Liu, Zhuang ;
Welsher, Kevin ;
Robinson, Joshua Tucker ;
Goodwin, Andrew ;
Zaric, Sasa ;
Dai, Hongjie .
NANO RESEARCH, 2008, 1 (03) :203-212
[53]   Hydrothermally Mixed Hydroxyapatite-Multiwall Carbon Nanotubes Composite Coatings on Biomedical Alloys by Electrophoretic Deposition [J].
Ustundag, C. B. ;
Avciata, O. ;
Kaya, F. ;
Kaya, C. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (06) :1571-1576
[54]   Toughening in Graphene Ceramic Composites [J].
Walker, Luke S. ;
Marotto, Victoria R. ;
Rafiee, Mohammad A. ;
Koratkar, Nikhil ;
Corral, Erica L. .
ACS NANO, 2011, 5 (04) :3182-3190
[55]   Poly(ε-caprolactone)/graphene oxide biocomposites: mechanical properties and bioactivity [J].
Wan, Chaoying ;
Chen, Biqiong .
BIOMEDICAL MATERIALS, 2011, 6 (05)
[56]   Strong and bioactive gelatin-graphene oxide nanocomposites [J].
Wan, Chaoying ;
Frydrych, Martin ;
Chen, Biqiong .
SOFT MATTER, 2011, 7 (13) :6159-6166
[57]  
Wang K., 2011, NANOSCALE RES LETT, V6
[58]   Corrosion performances of a Nickel-free Fe-based bulk metallic glass in simulated body fluids [J].
Wang, Y. B. ;
Li, H. F. ;
Cheng, Y. ;
Wei, S. C. ;
Zheng, Y. F. .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (11) :2187-2190
[59]   Aptamer/Graphene Oxide Nanocomplex for in Situ Molecular Probing in Living Cells [J].
Wang, Ying ;
Li, Zhaohui ;
Hu, Dehong ;
Lin, Chiann-Tso ;
Li, Jinghong ;
Lin, Yuehe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (27) :9274-9276
[60]  
Withers N., 2010, Nat Chem