Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications

被引:258
作者
Li, Ming [1 ]
Liu, Qian [1 ]
Jia, Zhaojun [1 ]
Xu, Xuchen [1 ]
Cheng, Yan [1 ]
Zheng, Yufeng [1 ,2 ]
Xi, Tingfei [1 ]
Wei, Shicheng [1 ,3 ]
机构
[1] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Biomed Mat & Tissue Engn, Beijing 100871, Peoples R China
[2] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
[3] Peking Univ, Sch Stomatol, Dept Oral & Maxillofacial Surg, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
TITANIUM SUBSTRATE; GRAPHITE OXIDE; MECHANICAL-PROPERTIES; IN-VITRO; HYDROXYAPATITE; DEPOSITION; NANOCOMPOSITES; LAYER; BIOCOMPATIBILITY; CELLS;
D O I
10.1016/j.carbon.2013.09.080
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene oxide (GO) was firstly employed as nanoscale reinforcement fillers in hydroxyapatite (HA) coatings by a cathodic electrophoretic deposition process, and GO/HA coatings were fabricated on pure Ti substrate. The transmission electron microscopy observation and particle size analysis of the suspensions indicated that HA nanoparticles were uniformly decorated on GO sheets, forming a large GO/HA particle group. The addition of GO into HA coatings could reduce the surface cracks and increase the coating adhesion strength from 1.55 +/- 0.39 MPa (pure HA) to 2.75 +/- 0.38 MPa (2 wt.% GO/HA) and 3.3 +/- 0.25 MPa (5 wt.% GO/HA), respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that the GO/HA composite coatings exhibited higher corrosion resistance in comparison with pure HA coatings in simulated body fluid. In addition, superior (around 95% cell viability for 2 wt.% GO/HA) or comparable (80-90% cell viability for 5 wt.% GO/HA) in vitro biocompatibility were observed in comparison with HA coated and uncoated Ti substrate. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:185 / 197
页数:13
相关论文
共 67 条
[11]   Synthesis and characterization of HAp nanorods from a cationic surfactant template method [J].
Coelho, J. M. ;
Moreira, J. Agostinho ;
Almeida, A. ;
Monteiro, F. J. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2010, 21 (09) :2543-2549
[12]   Nanoparticle ζ-Potentials [J].
Doane, Tennyson L. ;
Chuang, Chi-Hung ;
Hill, Reghan J. ;
Burda, Clemens .
ACCOUNTS OF CHEMICAL RESEARCH, 2012, 45 (03) :317-326
[13]   The influence of suspension composition and deposition mode on the electrophoretic deposition of TiO2 nanoparticle agglomerates [J].
Dor, S. ;
Ruhle, S. ;
Ofir, A. ;
Adler, M. ;
Grinis, L. ;
Zaban, A. .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2009, 342 (1-3) :70-75
[14]   Processing and mechanical properties of HA/UHMWPE nanocomposites [J].
Fang, LM ;
Leng, Y ;
Gao, P .
BIOMATERIALS, 2006, 27 (20) :3701-3707
[15]   A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells [J].
Feng, Lingyan ;
Chen, Yong ;
Ren, Jinsong ;
Qu, Xiaogang .
BIOMATERIALS, 2011, 32 (11) :2930-2937
[16]   Electrophoretic deposition - mechanisms, myths and materials [J].
Fukada, Y ;
Nagarajan, N ;
Mekky, W ;
Bao, Y ;
Kim, HS ;
Nicholson, PS .
JOURNAL OF MATERIALS SCIENCE, 2004, 39 (03) :787-801
[17]   Electrophoretic deposition of polymer-carbon nanotube-hydroxyapatite composites [J].
Grandfield, K. ;
Sun, F. ;
FitzPatrick, M. ;
Cheong, M. ;
Zhitomirsky, I. .
SURFACE & COATINGS TECHNOLOGY, 2009, 203 (10-11) :1481-1487
[18]   Transferable Graphene Oxide Films with Tunable Microstructures [J].
Hasan, Saad A. ;
Rigueur, John L. ;
Harl, Robert R. ;
Krejci, Alex J. ;
Gonzalo-Juan, Isabel ;
Rogers, Bridget R. ;
Dickerson, James H. .
ACS NANO, 2010, 4 (12) :7367-7372
[19]   A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis [J].
He, Shijiang ;
Song, Bo ;
Li, Di ;
Zhu, Changfeng ;
Qi, Wenpeng ;
Wen, Yanqin ;
Wang, Lihua ;
Song, Shiping ;
Fang, Haiping ;
Fan, Chunhai .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (03) :453-459
[20]   Preparation of hydroxyapatite functionally gradient coating on titanium substrate using a combination of electrophoretic deposition and reaction bonding process [J].
Huang, Jin-Cong ;
Ni, Yong-Jin ;
Wang, Zhou-Cheng .
SURFACE & COATINGS TECHNOLOGY, 2010, 204 (21-22) :3387-3392