Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications

被引:258
作者
Li, Ming [1 ]
Liu, Qian [1 ]
Jia, Zhaojun [1 ]
Xu, Xuchen [1 ]
Cheng, Yan [1 ]
Zheng, Yufeng [1 ,2 ]
Xi, Tingfei [1 ]
Wei, Shicheng [1 ,3 ]
机构
[1] Peking Univ, Acad Adv Interdisciplinary Studies, Ctr Biomed Mat & Tissue Engn, Beijing 100871, Peoples R China
[2] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
[3] Peking Univ, Sch Stomatol, Dept Oral & Maxillofacial Surg, Beijing 100081, Peoples R China
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
TITANIUM SUBSTRATE; GRAPHITE OXIDE; MECHANICAL-PROPERTIES; IN-VITRO; HYDROXYAPATITE; DEPOSITION; NANOCOMPOSITES; LAYER; BIOCOMPATIBILITY; CELLS;
D O I
10.1016/j.carbon.2013.09.080
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene oxide (GO) was firstly employed as nanoscale reinforcement fillers in hydroxyapatite (HA) coatings by a cathodic electrophoretic deposition process, and GO/HA coatings were fabricated on pure Ti substrate. The transmission electron microscopy observation and particle size analysis of the suspensions indicated that HA nanoparticles were uniformly decorated on GO sheets, forming a large GO/HA particle group. The addition of GO into HA coatings could reduce the surface cracks and increase the coating adhesion strength from 1.55 +/- 0.39 MPa (pure HA) to 2.75 +/- 0.38 MPa (2 wt.% GO/HA) and 3.3 +/- 0.25 MPa (5 wt.% GO/HA), respectively. Potentiodynamic polarization and electrochemical impedance spectroscopy studies indicated that the GO/HA composite coatings exhibited higher corrosion resistance in comparison with pure HA coatings in simulated body fluid. In addition, superior (around 95% cell viability for 2 wt.% GO/HA) or comparable (80-90% cell viability for 5 wt.% GO/HA) in vitro biocompatibility were observed in comparison with HA coated and uncoated Ti substrate. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:185 / 197
页数:13
相关论文
共 67 条
[1]   Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria [J].
Akhavan, Omid ;
Ghaderi, Elham .
ACS NANO, 2010, 4 (10) :5731-5736
[2]   Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: Effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition [J].
Albayrak, Onder ;
El-Atwani, Osman ;
Altintas, Sabri .
SURFACE & COATINGS TECHNOLOGY, 2008, 202 (11) :2482-2487
[3]   Electrochemical and structural evaluation of functionally graded bioglass-apatite composites electrophoretically deposited onto Ti6Al4V alloy [J].
Balamurugan, A. ;
Balossier, G. ;
Michel, J. ;
Ferreira, J. M. F. .
ELECTROCHIMICA ACTA, 2009, 54 (04) :1192-1198
[4]   A review on fundamentals and applications of electrophoretic deposition (EPD) [J].
Besra, Laxmidhar ;
Liu, Meilin .
PROGRESS IN MATERIALS SCIENCE, 2007, 52 (01) :1-61
[5]   Novel Multicomponent and Biocompatible Nanocomposite Materials Based on Few-Layer Graphenes Synthesized on a Gold/Hydroxyapatite Catalytic System with Applications in Bone Regeneration [J].
Biris, Alexandru R. ;
Mahmood, Meena ;
Lazar, Mihaela D. ;
Dervishi, Enkeleda ;
Watanabe, Fumiya ;
Mustafa, Thikra ;
Baciut, Grigore ;
Baciut, Mihaela ;
Bran, Simion ;
Ali, Syed ;
Biris, Alexandru S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (39) :18967-18976
[6]   Electrophoretic deposition of biomaterials [J].
Boccaccini, A. R. ;
Keim, S. ;
Ma, R. ;
Li, Y. ;
Zhitomirsky, I. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2010, 7 :S581-S613
[7]   Applications of Graphene Electrophoretic Deposition. A Review [J].
Chavez-Valdez, A. ;
Shaffer, M. S. P. ;
Boccaccini, A. R. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (06) :1502-1515
[8]   Annealing a graphene oxide film to produce a free standing high conductive graphene film [J].
Chen, Cheng-Meng ;
Huang, Jia-Qi ;
Zhang, Qiang ;
Gong, Wen-Zhao ;
Yang, Quan-Hong ;
Wang, Mao-Zhang ;
Yang, Yong-Gang .
CARBON, 2012, 50 (02) :659-667
[9]   Restoration of graphene from graphene oxide by defect repair [J].
Cheng, Meng ;
Yang, Rong ;
Zhang, Lianchang ;
Shi, Zhiwen ;
Yang, Wei ;
Wang, Duoming ;
Xie, Guibai ;
Shi, Dongxia ;
Zhang, Guangyu .
CARBON, 2012, 50 (07) :2581-2587
[10]  
Choi JW, 1998, J AM CERAM SOC, V81, P1743