A bijective approach to the area of generalized Motzkin paths

被引:13
作者
Pergola, E [1 ]
Pinzani, R
Rinaldi, S
Sulanke, RA
机构
[1] Univ Florence, Dipartimento Sist & Imformat, I-50121 Florence, Italy
[2] Boise State Univ, Boise, ID 83725 USA
关键词
lattice paths; Motzkin paths; recurrences;
D O I
10.1006/aama.2001.0796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For fixed positive integer k, let E-n denote the set of lattice paths using the steps (1, 1). (1, -1), and (k, 0) and running from (0, 0) to (n, 0) while remaining strictly above the x-axis elsewhere. We first prove bijectively that the total area of the regions bounded by the paths of E-n and the x-axis satisfies a four-term recurrence depending only on k. We then give both a bijective and a generating function argument proving that the total area under the paths of E-n equals the total number of lattice points on the x-axis hit by the unrestricted paths running from (0, 0) to (n - 2, 0) and using the same step set as above. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:580 / 591
页数:12
相关论文
共 12 条
[1]  
[Anonymous], ENUMERATIVE COMBINAT
[2]   A combinatorial interpretation of the recurrence fn+l = 6fn-fn-1 [J].
Barcucci, E ;
Brunetti, S ;
Del Lungo, A ;
Del Ristoro, F .
DISCRETE MATHEMATICS, 1998, 190 (1-3) :235-240
[3]  
BARCUCCI E, 1991, PURE MATH APPL A, V2, P249
[4]   SOME Q-ANALOGS OF THE SCHRODER NUMBERS ARISING FROM COMBINATORIAL STATISTICS ON LATTICE PATHS [J].
BONIN, J ;
SHAPIRO, L ;
SIMION, R .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1993, 34 (01) :35-55
[5]  
KREWERAS G, 1976, CAHIER BURO, V24, P9
[6]  
PERGOLA E, IN PRESS DISCRETE MA
[7]  
PERGOLA E, 1999, ELECT J COMBIN, V6
[8]  
SHAPIRO L, 1998, COMMUNICATION
[9]  
SULANKE RA, IN PRESS ADV APPL MA
[10]  
SULANKE RA, 2000, J INTEGER SEQUENCES, V3