Physics Design of CFETR: Determination of the Device Engineering Parameters

被引:153
作者
Wan, Baonian [1 ,2 ]
Ding, Siye [1 ]
Qian, Jinping [1 ]
Li, Guoqiang [1 ]
Xiao, Bingjia [1 ,2 ]
Xu, Guosheng [1 ]
机构
[1] Chinese Acad Sci, Inst Plasma Phys, Hefei 230031, Peoples R China
[2] Univ Sci & Technol China, Hefei 230027, Peoples R China
关键词
Confinement mode; reactor; steady state; POWER-PLANT;
D O I
10.1109/TPS.2013.2296939
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Chinese Fusion Engineering Test Reactor (CFETR) based on the tokamak approach with superconducting magnet technology is envisioned to provide 200-MW fusion power and operate with a goal of an annual duty factor of 0.3-0.5. This report based on a zero-dimensional system study using extrapolations of current physics by considering engineering constraints, is focused on qualitative determination of the engineering parameters of the device. Conservative assumptions of plasma performance based on present day existing experiments were made to assure achievable goals, since CFETR could be a near-term project to bridge the gaps between ITER and DEMO. The baseline of 200-MW fusion power in standard H-mode for a duration longer than 1000 s and in a modest improved H-mode (or hybrid mode) with H-98 <= 1.3 for steady-state operation derive a device of R = 5.7 m, a = 1.6 m in size with B-t = 5 T, and total heating and current drive source power of 80 MW. More ambitious operating modes with higher fusion power reaching the alpha-particle dominated self-heating regime for burning plasma study is possible with the same device hardware, if the more advanced physics is incorporated. Since large vacuum chamber design, possible upgrades both on physics and technologies enable operation of the device with larger plasma configuration and provide potentials to demonstrate key physics issues relevant to DEMO.
引用
收藏
页码:495 / 502
页数:8
相关论文
共 31 条
[1]  
[Anonymous], 2013, PROC IEEE 25 S FUSIO
[2]  
Baonian W., 2009, NUCL FUSION, V49
[3]   Comparison of hybrid and baseline ELMy H-mode confinement in JET with the carbon wall [J].
Beurskens, M. N. A. ;
Frassinetti, L. ;
Challis, C. ;
Osborne, T. ;
Snyder, P. B. ;
Alper, B. ;
Angioni, C. ;
Bourdelle, C. ;
Buratti, P. ;
Crisanti, F. ;
Giovannozzi, E. ;
Giroud, C. ;
Groebner, R. ;
Hobirk, J. ;
Jenkins, I. ;
Joffrin, E. ;
Leyland, M. J. ;
Lomas, P. ;
Mantica, P. ;
McDonald, D. ;
Nunes, I. ;
Rimini, F. ;
Saarelma, S. ;
Voitsekhovitch, I. ;
de Vries, P. ;
Zarzoso, D. .
NUCLEAR FUSION, 2013, 53 (01)
[4]   PHYSICS BASIS OF A FUSION DEVELOPMENT FACILITY UTILIZING THE TOKAMAK APPROACH [J].
Chan, V. S. ;
Stambaugh, R. D. ;
Garofalo, A. M. ;
Chu, M. S. ;
Fisher, R. K. ;
Greenfield, C. M. ;
Humphreys, D. A. ;
Lao, L. L. ;
Leuer, J. A. ;
Petrie, T. W. ;
Prater, R. ;
Staebler, G. M. ;
Snyder, P. B. ;
St John, H. E. ;
Turnbull, A. D. ;
Wong, C. P. C. ;
Van Zeeland, M. A. .
FUSION SCIENCE AND TECHNOLOGY, 2010, 57 (01) :66-93
[5]  
Chen Y. P., 2013, P IEEE 25 S FUS ENG
[6]  
Chien-Hao Liu, 2013, 2013 Abstracts IEEE International Conference on Plasma Science (ICOPS), DOI 10.1109/PLASMA.2013.6635052
[7]   VOLT-SECOND ANALYSIS AND CONSUMPTION IN DOUBLET-III PLASMAS [J].
EJIMA, S ;
CALLIS, RW ;
LUXON, JL ;
STAMBAUGH, RD ;
TAYLOR, TS ;
WESLEY, JC .
NUCLEAR FUSION, 1982, 22 (10) :1313-1319
[8]  
Feng K. M., 2013, P IEEE 25 S FUS ENG
[9]   Advances towards QH-mode viability for ELM-stable operation in ITER [J].
Garofalo, A. M. ;
Solomon, W. M. ;
Park, J. -K. ;
Burrell, K. H. ;
DeBoo, J. C. ;
Lanctot, M. J. ;
McKee, G. R. ;
Reimerdes, H. ;
Schmitz, L. ;
Schaffer, M. J. ;
Snyder, P. B. .
NUCLEAR FUSION, 2011, 51 (08)
[10]   Physics basis for the advanced tokamak fusion power plant, ARIES-AT [J].
Jardin, SC ;
Kessel, CE ;
Mau, TK ;
Miller, RL ;
Najmabadi, F ;
Chan, VS ;
Chu, MS ;
LaHaye, R ;
Lao, LL ;
Petrie, TW ;
Politzer, P ;
St John, HE ;
Snyder, P ;
Staebler, GM ;
Turnbull, AD ;
West, WP .
FUSION ENGINEERING AND DESIGN, 2006, 80 (1-4) :25-62