A note on polynomial interpolation

被引:4
|
作者
Cecilio, WAG [1 ]
Cordeiro, CJ [1 ]
Milléo, IS [1 ]
Santiago, CD [1 ]
Zanardini, RAD [1 ]
Yuan, JY [1 ]
机构
[1] Univ Fed Parana, Dept Matemat, Ctr Politecn, BR-81531990 Curitiba, Parana, Brazil
关键词
Aitkens algorithm; Neville's algorithm; Lagrangian interpolation; successively quadratic interpolation; successively linear interpolation; polynomial interpolation; parallel computation;
D O I
10.1080/00207160210937
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Neville's algorithm and the Aitkens algorithm are successively linear interpolation approach to high degree Lagrangian interpolation. This note proposes a new approach with iteratively quadratic interpolation to high degree Lagrangian interpolation. The new algorithm here is cheaper (about 20% cheaper) than the Neville's algorithm. Several functions were tested. Numerical experiments coincide with the theoretical analysis. The combination of linear approach and quadratic approach is considered too.
引用
收藏
页码:465 / 471
页数:7
相关论文
共 50 条
  • [41] LACUNARY POLYNOMIAL SPLINE INTERPOLATION
    DEMKO, S
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A160 - A160
  • [42] On the history of multivariate polynomial interpolation
    Gasca, M
    Sauer, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 122 (1-2) : 23 - 35
  • [43] Quartic and Quintic Polynomial Interpolation
    Hiang, Tan Saw
    Ali, Jamaludin Md.
    PROCEEDINGS OF THE 20TH NATIONAL SYMPOSIUM ON MATHEMATICAL SCIENCES (SKSM20): RESEARCH IN MATHEMATICAL SCIENCES: A CATALYST FOR CREATIVITY AND INNOVATION, PTS A AND B, 2013, 1522 : 664 - 675
  • [44] Bayer Demosaicking With Polynomial Interpolation
    Wu, Jiaji
    Anisetti, Marco
    Wu, Wei
    Damiani, Ernesto
    Jeon, Gwanggil
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (11) : 5369 - 5382
  • [45] Principles of local polynomial interpolation
    Schaum, A.
    2008 37TH IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP, 2008, : 170 - 175
  • [46] ON POLYNOMIAL INTERPOLATION IN THE MONOMIAL BASIS
    Shen, Zewen
    Serkh, Kirill
    SIAM Journal on Numerical Analysis, 2025, 63 (02) : 469 - 494
  • [47] On polynomial interpolation of two variables
    Bojanov, B
    Xu, Y
    JOURNAL OF APPROXIMATION THEORY, 2003, 120 (02) : 267 - 282
  • [48] CONVERGENCE OF A GENERALIZED INTERPOLATION POLYNOMIAL
    RUSAK, VN
    AIAA JOURNAL, 1963, 1 (07) : 1746 - 1747
  • [49] ON POLYNOMIAL INTERPOLATION WITH MIXED CONDITIONS
    CLAUSING, A
    JOURNAL OF APPROXIMATION THEORY, 1981, 33 (04) : 288 - 295
  • [50] Polynomial interpolation and approximation in Cd
    Bloom, T.
    Bos, L. P.
    Calvi, J. -P.
    Levenberg, N.
    ANNALES POLONICI MATHEMATICI, 2012, 106 : 53 - 81