Effect of Ionic Groups on Polymer-Grafted Magnetic Nanoparticle Assemblies

被引:15
|
作者
Jiao, Yang [1 ]
Parra, Javier [1 ]
Akcora, Pinar [1 ]
机构
[1] Stevens Inst Technol, Dept Chem Engn & Mat Sci, Hoboken, NJ 07030 USA
基金
美国国家科学基金会;
关键词
SULFONATED POLYSTYRENE IONOMERS; X-RAY-SCATTERING; PRECISE IONOMERS; CATION TYPE; BEHAVIOR; MELTS; NANOCOMPOSITES; SIMULATIONS; COPOLYMERS; MORPHOLOGY;
D O I
10.1021/ma402509b
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Conductivity in ionomer melts is governed by the density of conducting ions and ionic aggregation within low dielectric polymers. New material design strategies are needed to direct ion aggregation by utilizing low ion densities that will improve ion conductivity in polymer composite films. Here, we report the dispersion of ionomer-grafted magnetic nanoparticles (NPs) in polymers to explore their potential in energy applications. Iron oxide NPs coated with a uniform silane layer are grafted with polystyrene (PS) chains and are randomly sulfonated to various extents. We examine the interplay between ionic interactions and chain repulsion by varying the ion concentration and length of grafted chains. Transmission electron microscopy and small-angle X-ray scattering results show that ion-containing polymer-grafted NPs form highly ordered chain-like structures below 3 mol % sulfonation in bulk at two particle loadings (5 and 15 wt %). Moreover, increasing grafted chain length leads to long-range spacing correlations between sulfonated strings. This strategy to create discrete and connected highly ordered string nanostructures can be used as a means of controlling the ion aggregation and transport in polymer nanocomposites.
引用
收藏
页码:2030 / 2036
页数:7
相关论文
共 50 条
  • [31] Self-assembly of Polymer-grafted Nanoparticle Amphiphiles in Selective Solvents
    Li, Qing-xiao
    Wang, Zheng
    Yin, Yu-hua
    Jiang, Run
    Li, Bao-hui
    ACTA POLYMERICA SINICA, 2018, (10): : 1351 - 1358
  • [32] Effects of morphology on the mechanical properties of heterogeneous polymer-grafted nanoparticle networks
    Zhang, Tao
    Mbanga, Badel
    Yashin, Victor
    Balazs, Anna
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [33] Self-Assembly of Bare/Polymer-Grafted Nanoparticle Blends in Homopolymer
    Sriramoju, Kishore Kumar
    Padmanabhan, Venkat
    MACROMOLECULAR THEORY AND SIMULATIONS, 2016, 25 (06) : 582 - 590
  • [34] Surface Fluctuations Dominate the Slow Glassy Dynamics of Polymer-Grafted Colloid Assemblies
    Asai, Makoto
    Cacciuto, Angelo
    Kumar, Sanat K.
    ACS CENTRAL SCIENCE, 2018, 4 (09) : 1179 - 1184
  • [35] Polymer-Grafted, Nonfouling, Magnetic Nanoparticles Designed to Selectively Store and Release Molecules via Ionic Interactions
    Basuki, Johan Sebastian
    Duong, Hien T. T.
    Macmillan, Alexander
    Whan, Renee
    Boyer, Cyrille
    Davis, Thomas P.
    MACROMOLECULES, 2013, 46 (17) : 7043 - 7054
  • [36] Colloidal stability of bare and polymer-grafted silica nanoparticles in ionic liquids
    Ueno, Kazuhide
    Inaba, Aya
    Kondoh, Masashi
    Watanabe, Masayoshi
    LANGMUIR, 2008, 24 (10) : 5253 - 5259
  • [37] Preparation and application of polymer-grafted magnetic nanoparticles for lipase immobilization
    Yong, Yang
    Bai, Yongxiao
    Li, Yanfeng
    Lin, Lei
    Cui, Yanjun
    Xia, Chungu
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (19) : 2350 - 2355
  • [38] Dispersion of polymer-grafted magnetic nanoparticles in homopolymers and block copolymers
    Xu, Chen
    Ohno, Kohji
    Ladmiral, Vincent
    Composto, Russell J.
    POLYMER, 2008, 49 (16) : 3568 - 3577
  • [39] Non-Equilibrium Phase Behavior of Immiscible Polymer-Grafted Nanoparticle Blends
    Kim, Deul
    Sihn, Moon Ryul
    Jeon, Min-Gi
    Yuan, Guangcui
    Satija, Sushil K.
    Kim, Yeonho
    Choi, Jihoon
    MACROMOLECULES, 2019, 52 (15) : 5811 - 5818
  • [40] Viscoelastic Properties of Polymer-Grafted Nanoparticle Composites from Molecular Dynamics Simulations
    Hattemer, Gregory D.
    Arya, Gaurav
    MACROMOLECULES, 2015, 48 (04) : 1240 - 1255