Triangulating and guarding realistic polygons

被引:0
|
作者
Aloupis, Greg [1 ,2 ]
Bose, Prosenjit [1 ]
Dujmovic, Vida [1 ]
Gray, Chris [3 ]
Langerman, Stefan [4 ]
Speckmann, Bettina [3 ]
机构
[1] Carleton Univ, Ottawa, ON K1S 5B6, Canada
[2] Univ Libre Bruxelles, Brussels, Belgium
[3] TU Eindhoven, Eindhoven, Netherlands
[4] Univ Libre Bruxelles, Chercheur Qualifie FNRS, Brussels, Belgium
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2014年 / 47卷 / 02期
关键词
Triangulation; Art gallery; Guarding; Polygon; LINEAR ALGORITHM; CONVEX-HULL; POINT; COMPLEXITY; GALLERIES; POLYHEDRA; OBJECTS; TIME;
D O I
10.1016/j.comgeo.2013.03.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new model of realistic input: k-guardable objects. An object is k-guardable if its boundary can be seen by k guards. We show that k-guardable polygons generalize two previously identified classes of realistic input. Following this, we give two simple algorithms for triangulating k-guardable polygons. One algorithm requires the guards as input while the other does not. Both take linear time assuming that k is constant and both are easily implementable. (C) 2013 Published by Elsevier B.V.
引用
收藏
页码:296 / 306
页数:11
相关论文
共 50 条
  • [21] Covering points with orthogonally convex polygons
    Genc, Burkay
    Evrendilek, Cem
    Hnich, Brahim
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2011, 44 (05): : 249 - 264
  • [22] Diffuse reflection diameter in simple polygons
    Barequet, Gill
    Cannon, Sarah M.
    Fox-Epstein, Eli
    Hescott, Benjamin
    Souvaine, Diane L.
    Toth, Csaba D.
    Winslow, Andrew
    DISCRETE APPLIED MATHEMATICS, 2016, 210 : 123 - 132
  • [23] GUARDING RECTANGULAR PARTITIONS
    Dinitz, Yefim
    Katz, Matthew J.
    Krakovski, Roi
    INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 2009, 19 (06) : 579 - 594
  • [24] An Approach To Triangulate Area Bounded Simple Polygons
    Tereshchenko, Vasyl
    Kolianova, Tania
    Tereshchenko, Yaroslav
    2017 IEEE FIRST UKRAINE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (UKRCON), 2017, : 655 - 658
  • [25] DYADIC POLYGONS
    Matczak, K.
    Romanowska, A. B.
    Smith, J. D. H.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2011, 21 (03) : 387 - 408
  • [26] The σ-visibility of polygons
    Qin, ZP
    Zhang, HG
    FIFTH INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN & COMPUTER GRAPHICS, VOLS 1 AND 2, 1997, : 297 - 302
  • [27] Counting triangulations of almost-convex polygons
    Hurtado, F
    Noy, M
    ARS COMBINATORIA, 1997, 45 : 169 - 179
  • [28] Memory-constrained algorithms for simple polygons
    Asano, Tetsuo
    Buchin, Kevin
    Buchin, Maike
    Korman, Matias
    Mulzer, Wolfgang
    Rote, Guenter
    Schulz, Andre
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2013, 46 (08): : 959 - 969
  • [29] CERTAIN CLASSES OF POLYGONS IN R-2 AND AREAS OF POLYGONS
    Radic, Mirko
    Susanj, Rene
    Trinajstic, Nenad
    RAD HRVATSKE AKADEMIJE ZNANOSTI I UMJETNOSTI-MATEMATICKE ZNANOSTI, 2009, 16 (503): : 7 - 12
  • [30] Triangulating Unknown Environments using Robot Swarms
    Becker, Aaron
    Fekete, Sandor P.
    Kroeller, Alexander
    Lee, Seoung Kyou
    McLurkin, James
    Schmidt, Christiane
    PROCEEDINGS OF THE TWENTY-NINETH ANNUAL SYMPOSIUM ON COMPUTATIONAL GEOMETRY (SOCG'13), 2013, : 345 - 346