Aligned 3D porous polyurethane scaffolds for biological anisotropic tissue regeneration

被引:31
|
作者
Lin, Weiwei [1 ]
Lan, Wanling [2 ]
Wu, Yingke [1 ]
Zhao, Daiguo [2 ]
Wang, Yanchao [3 ]
He, Xueling [4 ]
Li, Jiehua [1 ]
Li, Zhen [1 ]
Luo, Feng [1 ]
Tan, Hong [1 ]
Fu, Qiang [1 ]
机构
[1] Sichuan Univ, State Key Lab Polymer Mat Engn, Coll Polymer Sci & Engn, Chengdu 610065, Peoples R China
[2] Sichuan Inst Food & Drug Control, Chengdu 611731, Peoples R China
[3] Sichuan Univ, West China Hosp, Dept Neurosurg, Chengdu 610065, Peoples R China
[4] Sichuan Univ, Lab Anim Ctr, Chengdu 610041, Peoples R China
基金
中国国家自然科学基金;
关键词
polyurethane; aligned scaffolds; tissue engineering; anisotropic regeneration; CELL; FIBROBLASTS; FABRICATION; GUIDANCE; SURFACE;
D O I
10.1093/rb/rbz031
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
A green fabrication process (organic solvent-free) of artificial scaffolds is required in tissue engineering field. In this work, a series of aligned three-dimensional (3D) scaffolds are made from biodegradable waterborne polyurethane (PU) emulsion via directional freeze-drying method to ensure no organic byproducts. After optimizing the concentration of polymer in the emulsion and investigating different freezing temperatures, an aligned PUs scaffold (PU14) generated from 14wt% polymer content and processed at -196 degrees C was selected based on the desired oriented porous structure (pore size of 32.5 +/- 9.3 mu m, porosity of 92%) and balanced mechanical properties both in the horizontal direction (strength of 41.3 kPa, modulus of 72.3 kPa) and in the vertical direction (strength of 45.5 kPa, modulus of 139.3 kPa). The response of L929 cells and the regeneration of muscle tissue demonstrated that such pure material-based aligned 3D scaffold can facilitate the development of orientated cells and anisotropic tissue regeneration both in vitro and in vivo. Thus, these pure material-based scaffolds with ordered architecture have great potentials in tissue engineering for biological anisotropic tissue regeneration, such as muscle, nerve, spinal cord and so on.
引用
收藏
页码:19 / 28
页数:10
相关论文
共 50 条
  • [31] Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography
    Gauvin, Robert
    Chen, Ying-Chieh
    Lee, Jin Woo
    Soman, Pranav
    Zorlutuna, Pinar
    Nichol, Jason W.
    Bae, Hojae
    Chen, Shaochen
    Khademhosseini, Ali
    BIOMATERIALS, 2012, 33 (15) : 3824 - 3834
  • [32] Apatite derived three dimensional (3D) porous scaffolds for tissue engineering applications
    Ramadas, M.
    El Mabrouk, Khalil
    Ballamurugan, A. M.
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 242
  • [33] Biofabrication of glass scaffolds by 3D printing for tissue engineering
    Oliveira Pires, Liliana Sofia
    Figueira Vaz Fernandes, Maria Helena
    Marques de Oliveira, Jose Martinho
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 98 (9-12): : 2665 - 2676
  • [34] Design and properties of 3D scaffolds for bone tissue engineering
    Gomez, S.
    Vlad, M. D.
    Lopez, J.
    Fernandez, E.
    ACTA BIOMATERIALIA, 2016, 42 : 341 - 350
  • [35] On 3D printed scaffolds for orthopedic tissue engineering applications
    Ranjan, Nishant
    Singh, Rupinder
    Ahuja, I. P. S.
    Kumar, Ranvijay
    Singh, Jatenderpal
    Verma, Anita K.
    Leekha, Ankita
    SN APPLIED SCIENCES, 2020, 2 (02):
  • [36] 3D polymer scaffolds for tissue engineering
    Seunarine, K.
    Gadegaard, N.
    Tormen, M.
    O Meredith, D.
    O Riehle, M.
    Wilkinson, C. D. W.
    NANOMEDICINE, 2006, 1 (03) : 281 - 296
  • [37] Quantifying the 3D macrostructure of tissue scaffolds
    Jones, Julian R.
    Atwood, Robert C.
    Poologasundarampillai, Gowsihan
    Yue, Sheng
    Lee, Peter D.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2009, 20 (02) : 463 - 471
  • [38] Hybrid Macro-Porous Titanium Ornamented by Degradable 3D Gel/nHA Micro-Scaffolds for Bone Tissue Regeneration
    Yin, Bo
    Ma, Pei
    Chen, Jun
    Wang, Hai
    Wu, Gui
    Li, Bo
    Li, Qiang
    Huang, Zhifeng
    Qiu, Guixing
    Wu, Zhihong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (04)
  • [39] Composite Biomaterials as Long-Lasting Scaffolds for 3D Bioprinting of Highly Aligned Muscle Tissue
    Garcia-Lizarribar, Andrea
    Fernandez-Garibay, Xiomara
    Velasco-Mallorqui, Ferran
    Castano, Albert G.
    Samitier, Josep
    Ramon-Azcon, Javier
    MACROMOLECULAR BIOSCIENCE, 2018, 18 (10)
  • [40] Strategies to Introduce Topographical and Structural Cues in 3D-Printed Scaffolds and Implications in Tissue Regeneration
    Iturriaga, Leire
    Van Gordon, Kyle D.
    Larranaga-Jaurrieta, Garazi
    Camarero-Espinosa, Sandra
    ADVANCED NANOBIOMED RESEARCH, 2021, 1 (12):