A TIGHT LINEAR TIME (1/2)-APPROXIMATION FOR UNCONSTRAINED SUBMODULAR MAXIMIZATION

被引:144
作者
Buchbinder, Niv [1 ]
Feldman, Moran [2 ]
Naor, Joseph
Schwartz, Roy [3 ]
机构
[1] Tel Aviv Univ, Stat & Operat Res Dept, IL-69978 Tel Aviv, Israel
[2] Ecole Polytech Fed Lausanne, Sch Comp & Commun Sci, CH-1015 Lausanne, Switzerland
[3] Princeton Univ, Dept Comp Sci, Princeton, NJ 08540 USA
关键词
submodular functions; approximation algorithms; linear time; APPROXIMATION ALGORITHMS; CUT; MINIMIZATION; LOCATION;
D O I
10.1137/130929205
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the Unconstrained Submodular Maximization problem in which we are given a nonnegative submodular function f : 2(N) -> R+, and the objective is to find a subset S subset of N maximizing f(S). This is one of the most basic submodular optimization problems, having a wide range of applications. Some well-known problems captured by Unconstrained Submodular Maximization include Max-Cut, Max-DiCut, and variants of Max-SAT and maximum facility location. We present a simple randomized linear time algorithm achieving a tight approximation guarantee of 1/2, thus matching the known hardness result of Feige, Mirrokni, and Vondrak [SIAM J. Comput., 40 (2011), pp. 1133-1153]. Our algorithm is based on an adaptation of the greedy approach which exploits certain symmetry properties of the problem.
引用
收藏
页码:1384 / 1402
页数:19
相关论文
共 40 条
[1]   An 0.828-approximation algorithm for the uncapacitated facility location problem [J].
Ageev, AA ;
Sviridenko, MI .
DISCRETE APPLIED MATHEMATICS, 1999, 93 (2-3) :149-156
[2]   Maximizing a class of submodular utility functions [J].
Ahmed, Shabbir ;
Atamtuerk, Alper .
MATHEMATICAL PROGRAMMING, 2011, 128 (1-2) :149-169
[3]  
[Anonymous], 1999, MAXIMIZATION SUBMODU
[4]  
Buchbinder N., 2014, P 25 ANN ACM SIAM S, P1433, DOI DOI 10.1137/1.9781611973402.106
[5]   MAXIMIZING A MONOTONE SUBMODULAR FUNCTION SUBJECT TO A MATROID CONSTRAINT [J].
Calinescu, Gruia ;
Chekuri, Chandra ;
Pal, Martin ;
Vondrak, Jan .
SIAM JOURNAL ON COMPUTING, 2011, 40 (06) :1740-1766
[6]  
Chekuri C, 2011, ACM S THEORY COMPUT, P783
[7]   Dependent Randomized Rounding via Exchange Properties of Combinatorial Structures [J].
Chekuri, Chandra ;
Vondrak, Jan ;
Zenklusen, Rico .
2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, :575-584
[8]  
CHERENIN V, 1962, P C EXP PERSP APPL M
[9]   LOCATION OF BANK ACCOUNTS TO OPTIMIZE FLOAT - ANALYTIC STUDY OF EXACT AND APPROXIMATE ALGORITHMS [J].
CORNUEJOLS, G ;
FISHER, ML ;
NEMHAUSER, GL .
MANAGEMENT SCIENCE, 1977, 23 (08) :789-810
[10]  
Cornuejols G., 1977, Annals of Discrete Mathematics, V1, P163, DOI [DOI 10.1016/S0167-5060(08)70732-5, 10.1016/S0167-5060(08)70732-5]