Whistler Mode Waves in the Compressional Boundary of Foreshock Transients

被引:17
|
作者
Shi, Xiaofei [1 ]
Liu, Terry Z. [2 ,3 ,4 ]
Angelopoulos, Vassilis [4 ]
Zhang, Xiao-Jia [4 ]
机构
[1] Peking Univ, Sch Earth & Space Sci, Beijing, Peoples R China
[2] Univ Corp Atmospher Res, Cooperat Programs Adv Earth Syst Sci, Boulder, CO 80307 USA
[3] Univ Alaska, Inst Geophys, Fairbanks, AK 99775 USA
[4] Univ Calif Los Angeles, Dept Earth Planetary & Space Sci, Los Angeles, CA 90095 USA
关键词
HOT FLOW ANOMALIES; PARTICLE-ACCELERATION; BOW SHOCK; UPSTREAM; MAGNETOSHEATH; FIELD; MAGNETOPAUSE; INSTRUMENT; ELECTRONS; BUBBLES;
D O I
10.1029/2019JA027758
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Earth's foreshock is filled with backstreaming particles that can generate a variety of waves and foreshock transients. According to recent studies, these particles can be further accelerated while being scattered by field fluctuations, including waves, inside foreshock transients, contributing to particle acceleration at the parent bow shock. The properties of these waves and how they interact with particles and affect particle acceleration inside foreshock transients are still unclear, however. Here we take the first step to study one important type of these waves, whistler waves. We use Time History of Events and Macroscale Interactions during Substorms (THEMIS) observations and employ multiple case studies to investigate the properties of whistler waves in the compressional boundaries of foreshock transients where THEMIS wave burst mode is triggered. We show that the whistler waves are quasi parallel propagating with bidirectional Poynting vectors, suggesting that they are locally generated. We focus on how they interact with electrons. We show that the diffusion surfaces for these waves in the electron velocity space match the observed electron phase space density distribution contours better when the modeled pitch angle diffusion coefficients from these waves are higher. We also demonstrate that higher-energy electrons are more likely to be scattered by whistler waves. Our results suggest that whistler waves are important for scattering tens to hundreds of electronvolt electrons inside foreshock transients and elucidate electron dynamics and whistler wave properties in such environments.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Identification of the dominant ULF wave mode and generation mechanism for obliquely propagating waves in the Earth's foreshock
    Strumik, M.
    Roytershteyn, V.
    Karimabadi, H.
    Stasiewicz, K.
    Grzesiak, M.
    Przepiorka, D.
    GEOPHYSICAL RESEARCH LETTERS, 2015, 42 (13) : 5109 - 5116
  • [22] Foreshock waves as observed in energetic ion flux
    Petrukovich, A. A.
    Chugunova, O. M.
    Inamori, T.
    Kudela, K.
    Stetiarova, J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2017, 122 (05) : 4895 - 4904
  • [23] Magnetospheric Field-Aligned Current Generation by Foreshock Transients: Contribution by Flow Vortices and Pressure Gradients
    Liu, Terry Z.
    Wang, Chih-Ping
    Wang, Xueyi
    Angelopoulos, Vassilis
    Zhang, Hui
    Lu, Xi
    Lin, Yu
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2022, 127 (11)
  • [24] Whistler-mode chorus waves at Mars
    Teng, Shangchun
    Wu, Yifan
    Harada, Yuki
    Bortnik, Jacob
    Zonca, Fulvio
    Chen, Liu
    Tao, Xin
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [25] Whistler mode waves atmagnetotail dipolarization fronts
    Viberg, H.
    Khotyaintsev, Yu. V.
    Vaivads, A.
    Andre, M.
    Fu, H. S.
    Cornilleau-Wehrlin, N.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (04) : 2605 - 2611
  • [26] First Global Images of Ion Energization in the Terrestrial Foreshock by the Interstellar Boundary Explorer
    Dayeh, M. A.
    Szalay, J. R.
    Ogasawara, K.
    Fuselier, S. A.
    McComas, D. J.
    Funsten, H. O.
    Petrinec, S. M.
    Schwadron, N. A.
    Zirnstein, E. J.
    GEOPHYSICAL RESEARCH LETTERS, 2020, 47 (16)
  • [27] Global Propagation of Magnetospheric Pc5 ULF Waves Driven by Foreshock Transients
    Wang, Boyi
    Liu, Terry
    Nishimura, Yukitoshi
    Zhang, Hui
    Hartinger, Michael
    Shi, Xueling
    Ma, Qianli
    Angelopoulos, Vassilis
    Frey, Harald U.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (12)
  • [28] Harmonics of whistler-mode waves near the Moon
    Tsugawa, Yasunori
    Katoh, Yuto
    Terada, Naoki
    Tsunakawa, Hideo
    Takahashi, Futoshi
    Shibuya, Hidetoshi
    Shimizu, Hisayoshi
    Matsushima, Masaki
    EARTH PLANETS AND SPACE, 2015, 67
  • [29] Newevidence for generation mechanisms of discrete and hiss-like whistler mode waves
    Gao, Xinliang
    Li, Wen
    Thorne, Richard M.
    Bortnik, Jacob
    Angelopoulos, Vassilis
    Lu, Quanming
    Tao, Xin
    Wang, Shui
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (14) : 4805 - 4811
  • [30] Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft
    Li, W.
    Thorne, R. M.
    Angelopoulos, V.
    Bortnik, J.
    Cully, C. M.
    Ni, B.
    LeContel, O.
    Roux, A.
    Auster, U.
    Magnes, W.
    GEOPHYSICAL RESEARCH LETTERS, 2009, 36