Unstructured overset incompressible computational fluid dynamics for unsteady wind turbine simulations

被引:24
|
作者
Lynch, C. E. [1 ]
Smith, M. J. [1 ]
机构
[1] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
CFD; overset; yawed flow; unstructured; RANS; LES; trim; NAVIER-STOKES; AERODYNAMICS; AIRFOILS;
D O I
10.1002/we.1532
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Overset computational fluid dynamics (CFD) methods are the most sophisticated methods currently available to predict the unsteady motion of wind turbine blades without the need for additional simplifications or restrictions on the turbine operational conditions. An unstructured implementation of the governing equations of motion permits rapid modeling of the salient components, such as nacelles, towers and other localized obstructions of interest. A time-accurate incompressible formulation accelerates the convergence of the solution, in addition to eliminating the need for low-Mach number preconditioning, which can be problematic and computationally expensive for time-accurate simulations. The use of a hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence method is observed to improve the prediction and extent of separation, as well as integrated performance variables for stalled rotors under fully turbulent conditions. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1033 / 1048
页数:16
相关论文
共 50 条
  • [21] Computational Fluid Dynamics Studies of a Vertical Axis Wind Turbine with a Variable Swept Area
    Pedzisz, Idzi
    Magryta, Pawel
    Pietrykowski, Konrad
    ADVANCES IN SCIENCE AND TECHNOLOGY-RESEARCH JOURNAL, 2024, 18 (02) : 333 - 348
  • [22] Unsteady computational fluid dynamics analysis of the hydrodynamic instabilities in a reversible Francis turbine used in a storage plant
    Mauro, S.
    Lanzafame, R.
    Brusca, S.
    Messina, M.
    HELIYON, 2019, 5 (09)
  • [23] Unsteady computational fluid dynamics in front crawl swimming
    Samson, Mathias
    Bernard, Anthony
    Monnet, Tony
    Lacouture, Patrick
    David, Laurent
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2017, 20 (07) : 783 - 793
  • [24] A review of computational fluid dynamics application to investigate tropical cyclone wind speeds
    Shah, Muizz
    Norris, Stuart E. E.
    Turner, Richard
    Flay, Richard G. J.
    NATURAL HAZARDS, 2023, 117 (01) : 897 - 915
  • [25] Computational fluid dynamics analysis of the vertical axis wind turbine blade with tubercle leading edge
    Bai, Chi-Jeng
    Lin, Yang-You
    Lin, San-Yih
    Wang, Wei-Cheng
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2015, 7 (03)
  • [26] Computational fluid dynamics study on the efficiency of straight-bladed vertical axis wind turbine
    Iddou H.
    Bouda N.N.
    Zereg K.
    International Journal of Thermofluids, 2024, 22
  • [27] Computational Analysis of Fire Dynamics Inside a Wind Turbine
    B. Rengel
    E. Pastor
    D. Hermida
    E. Gómez
    L. Molinelli
    E. Planas
    Fire Technology, 2017, 53 : 1933 - 1942
  • [28] Practical applications of computational fluid dynamics to wind design of high-rise buildings
    Kim, Min Kyu
    Kang, Soonpil
    Kang, Thomas H. -K.
    WIND AND STRUCTURES, 2024, 39 (04) : 287 - 304
  • [29] Computational Analysis of Fire Dynamics Inside a Wind Turbine
    Rengel, B.
    Pastor, E.
    Planas, E.
    Hermida, D.
    Gomez, E.
    Molinelli, L.
    FIRE TECHNOLOGY, 2017, 53 (05) : 1933 - 1942
  • [30] Parabolic RANS solver for low-computational-cost simulations of wind turbine wakes
    Iungo, Giacomo Valerio
    Santhanagopalan, Vignesh
    Ciri, Umberto
    Viola, Francesco
    Zhan, Lu
    Rotea, Mario A.
    Leonardi, Stefano
    WIND ENERGY, 2018, 21 (03) : 184 - 197