Unstructured overset incompressible computational fluid dynamics for unsteady wind turbine simulations

被引:24
|
作者
Lynch, C. E. [1 ]
Smith, M. J. [1 ]
机构
[1] Georgia Inst Technol, Sch Aerosp Engn, Atlanta, GA 30332 USA
基金
美国国家科学基金会;
关键词
CFD; overset; yawed flow; unstructured; RANS; LES; trim; NAVIER-STOKES; AERODYNAMICS; AIRFOILS;
D O I
10.1002/we.1532
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Overset computational fluid dynamics (CFD) methods are the most sophisticated methods currently available to predict the unsteady motion of wind turbine blades without the need for additional simplifications or restrictions on the turbine operational conditions. An unstructured implementation of the governing equations of motion permits rapid modeling of the salient components, such as nacelles, towers and other localized obstructions of interest. A time-accurate incompressible formulation accelerates the convergence of the solution, in addition to eliminating the need for low-Mach number preconditioning, which can be problematic and computationally expensive for time-accurate simulations. The use of a hybrid Reynolds-averaged Navier-Stokes/large eddy simulation (RANS/LES) turbulence method is observed to improve the prediction and extent of separation, as well as integrated performance variables for stalled rotors under fully turbulent conditions. Copyright (c) 2012 John Wiley & Sons, Ltd.
引用
收藏
页码:1033 / 1048
页数:16
相关论文
共 50 条
  • [1] Comparison of the Blade Element Momentum Theory with Computational Fluid Dynamics for Wind Turbine Simulations in Turbulent Inflow
    Ehrich, Sebastian
    Schwarz, Carl Michael
    Rahimi, Hamid
    Stoevesandt, Bernhard
    Peinke, Joachim
    APPLIED SCIENCES-BASEL, 2018, 8 (12):
  • [2] Review of computational fluid dynamics for wind turbine wake aerodynamics
    Sanderse, B.
    van der Pijl, S. P.
    Koren, B.
    WIND ENERGY, 2011, 14 (07) : 799 - 819
  • [3] Computational Fluid Dynamics Analysis for Wind Turbine Tunnel on Train
    Ganapathi R.
    Jayashree R.
    Harinarayana T.
    International Journal of Vehicle Structures and Systems, 2024, 16 (02) : 302 - 305
  • [4] Challenges in unstructured mesh generation for practical and efficient computational fluid dynamics simulations
    Ito, Yasushi
    COMPUTERS & FLUIDS, 2013, 85 : 47 - 52
  • [5] Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations
    Lam, H. F.
    Peng, H. Y.
    RENEWABLE ENERGY, 2016, 90 : 386 - 398
  • [6] Preparing an Incompressible -Flow Fluid Dynamics Code for Exascale-Class Wind Energy Simulations
    Mullowney, Paul
    Li, Ruipeng
    Thomas, Stephen
    Ananthan, Shreyas
    Sharma, Ashesh
    Rood, Jon S.
    Williams, Alan B.
    Sprague, Michael A.
    SC21: INTERNATIONAL CONFERENCE FOR HIGH PERFORMANCE COMPUTING, NETWORKING, STORAGE AND ANALYSIS, 2021,
  • [7] Steady and rotating computational fluid dynamics simulations of a novel vertical axis wind turbine for small-scale power generation
    McTavish, S.
    Feszty, D.
    Sankar, T.
    RENEWABLE ENERGY, 2012, 41 : 171 - 179
  • [8] Wind Turbine Rotor-Tower Interaction Using an Incompressible Overset Grid Method
    Zahle, Frederik
    Sorensen, Niels N.
    Johansen, Jeppe
    WIND ENERGY, 2009, 12 (06) : 594 - 619
  • [9] Synergistic analysis of a Darrieus wind turbine using computational fluid dynamics
    Ghazalla, R. A.
    Mohamed, M. H.
    Hafiz, A. A.
    ENERGY, 2019, 189
  • [10] Pedestrian Wind Comfort Assessment Using Computational Fluid Dynamics Simulations With Varying Number of Wind Directions
    Hagbo, Trond-Ola
    Giljarhus, Knut Erik Teigen
    FRONTIERS IN BUILT ENVIRONMENT, 2022, 8