Ab initio no-core Gamow shell model calculations with realistic interactions

被引:87
|
作者
Papadimitriou, G. [1 ]
Rotureau, J. [2 ]
Michel, N. [3 ,4 ,5 ]
Ploszajczak, M. [6 ]
Barrett, B. R. [1 ]
机构
[1] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[2] Chalmers Univ Technol, S-41296 Gothenburg, Sweden
[3] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
[4] Michigan State Univ, Natl Superconducting Cyclotron Lab, E Lansing, MI 48824 USA
[5] Michigan State Univ, Dept Phys & Astron, E Lansing, MI 48824 USA
[6] CEA DSM CNRS IN2P3, GANIL, F-14076 Caen 5, France
来源
PHYSICAL REVIEW C | 2013年 / 88卷 / 04期
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
MATRIX RENORMALIZATION-GROUP; UNIFIED THEORY; NUCLEAR; SCATTERING; EQUATIONS; RESONANCE; BRACKETS; STATES;
D O I
10.1103/PhysRevC.88.044318
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
No-core Gamow shell model (NCGSM) is applied to study selected well-bound and unbound states of helium isotopes. This model is formulated on the complex energy plane and, by using a complete Berggren ensemble, treats bound, resonant, and scattering states on equal footing. We use the density matrix renormalization group method to solve the many-body Schrodinger equation. To test the validity of our approach, we benchmarked the NCGSM results against Faddeev and Faddeev-Yakubovsky exact calculations for H-3 and He-4 nuclei. We also performed ab initio NCGSM calculations for the unstable nucleus He-5 and determined the ground-state energy and decay width, starting from a realistic (NLO)-L-3 chiral interaction.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Search for center-of-mass excitation free states in the SU(3) no-core shell model space
    Luo, F. Q.
    Caprio, M. A.
    Dytrych, T.
    HITES 2012: HORIZONS OF INNOVATIVE THEORIES, EXPERIMENTS, AND SUPERCOMPUTING IN NUCLEAR PHYSICS, 2012, 403
  • [32] Folding model analysis of the 6He elastic scattering using No-core Shell model: Indication of the breakup threshold anomaly
    Kucuk, Y.
    NUCLEAR PHYSICS A, 2014, 927 : 195 - 208
  • [33] Symmetry-adapted no-core shell model for light nuclei-12C and 16O
    Dreyfuss, Alison C.
    Launey, Kristina D.
    Draayer, Jerry P.
    Dytrych, Tomas
    Bahri, Chairul
    BEAUTY IN PHYSICS: THEORY AND EXPERIMENT: IN HONOR OF FRANCESCO LACHELLO ON THE OCCASION OF HIS 70TH BIRTHDAY, 2012, 1488 : 204 - 210
  • [34] Energy bands in graphene: Comparison between the tight-binding model and ab initio calculations
    Kogan, E.
    Nazarov, V. U.
    Silkin, V. M.
    Kaveh, M.
    PHYSICAL REVIEW B, 2014, 89 (16):
  • [35] Three-cluster dynamics within the ab initio Dno-core shell model with continuum: How many-body correlations and α clustering shape 6He
    Quaglioni, Sofia
    Romero-Redondo, Carolina
    Navratil, Petr
    Hupin, Guillaume
    PHYSICAL REVIEW C, 2018, 97 (03)
  • [36] Potential Energy Surface for Interactions Between H2 and Si: Ab Initio Calculations and Analytic Fits
    Yue, Wang
    Gan, Gao
    APPLIED MAGNETIC RESONANCE, 2015, 46 (06) : 661 - 669
  • [37] New ab initio calculations and collisional properties of closed-shell NCCP (1Σ+) by collisions with He (1S)
    Ritika
    Kumar, T. J. Dhilip
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 515 (04) : 5145 - 5150
  • [38] An evaluation of the thermal properties of H2 and O2 on the basis of ab initio calculations for their intermolecular interactions
    Koshi, Mitsuo
    Tsuda, Shin-ichi
    Shimizu, Kazuya
    MOLECULAR SIMULATION, 2012, 38 (05) : 356 - 365
  • [39] Response functions and giant monopole resonances for light to medium-mass nuclei from the ab initio symmetry-adapted no-core-shell model
    Burrows, M.
    Baker, R. B.
    Bacca, S.
    Launey, K. D.
    Dytrych, T.
    Langr, D.
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 2025, 52 (03)
  • [40] On the Origins of Core-Electron Chemical Shifts of Small Biomolecules in Aqueous Solution: Insights from Photoemission and ab Initio Calculations of Glycineaq
    Ottosson, Niklas
    Borve, Knut J.
    Spangberg, Daniel
    Bergersen, Henrik
    Saethre, Leif J.
    Faubel, Manfred
    Pokapanich, Wandared
    Ohrwall, Gunnar
    Bjorneholm, E.
    Winter, Bernd
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (09) : 3120 - 3130