EXPLICIT EXACT TRAVELING WAVE SOLUTIONS AND BIFURCATIONS OF THE KUNDU-ECKHAUS EQUATION

被引:0
|
作者
Zhu, Wenjing [1 ]
Xia, Yonghui [2 ]
Bai, Yuzhen [3 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2020年 / 21卷 / 03期
基金
中国国家自然科学基金;
关键词
Kundu-Eckhaus equation; exact solution; bifurcation; kink wave solution; CAMASSA-HOLM EQUATION; SPATIOTEMPORAL DYNAMICS; VARIABLE-COEFFICIENTS; OPTICAL SOLITON; PERIODIC-WAVE; EXISTENCE; DIFFUSION; MODEL; BEHAVIOR; PEAKONS;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper deals with the nonlinear complex Kundu-Eckhaus (KE) equation, a basic model in nonlinear optics which describes the propagation of solitons through the optical fiber. The bifurcation analysis is performed on the dynamic system associated to traveling wave solutions, showing the existence of periodic wave solutions, bright solitons, dark solitons, kink wave and anti-kink wave solutions, in different parametric domains. Explicit parametric representations of the traveling wave solutions are also obtained. Phase portraits and simulations are presented to illustrate the theoretical results.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 50 条
  • [41] Exact traveling wave solutions and bifurcations of a further modified Zakharov-Kuznetsov equation
    Leta, Temesgen Desta
    Li, Jibin
    NONLINEAR DYNAMICS, 2016, 85 (04) : 2629 - 2634
  • [42] Exact traveling wave solutions and bifurcations of the generalized derivative nonlinear Schrödinger equation
    Temesgen Desta Leta
    Jibin Li
    Nonlinear Dynamics, 2016, 85 : 1031 - 1037
  • [43] Explicit and exact traveling wave solutions to the nonlinear LC circuit equation
    Shang Ya-Dong
    Huang Yong
    ACTA PHYSICA SINICA, 2013, 62 (07)
  • [44] BIFURCATIONS AND EXACT TRAVELING WAVE SOLUTIONS FOR A GENERALIZED CAMASSA-HOLM EQUATION
    Li, Jibin
    Qiao, Zhijun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (03):
  • [45] EXACT TRAVELING WAVE SOLUTIONS AND BIFURCATIONS FOR THE DULLIN-GOTTWALD-HOLM EQUATION
    Yu, Weiqin
    Li, Na
    Chen, Fangqi
    Zhao, Shouwei
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (04): : 968 - 980
  • [46] Asymptotic analysis of high-order solitons of an equivalent Kundu-Eckhaus equation
    Yan, Xue-Wei
    Chen, Yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (15) : 12100 - 12120
  • [47] New Exact Travelling Wave Solutions to Kundu Equation
    HUANG Ding--Jiang
    LI De--Sheng
    ZHANG Hong--Qing Department of Applied Mathematics
    CommunicationsinTheoreticalPhysics, 2005, 44 (12) : 969 - 976
  • [48] New exact travelling wave solutions to Kundu equation
    Huang, DJ
    Li, DS
    Zhang, HQ
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2005, 44 (06) : 969 - 976
  • [49] EXACT TRAVELING WAVE SOLUTIONS AND THEIR BIFURCATIONS FOR THE GENERALIZED POCHHAMMER-CHREE EQUATIONS
    Li, Jibin
    Chen, Guanrong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (09):
  • [50] Rogue wave and multi-pole solutions for the focusing Kundu-Eckhaus Equation with nonzero background via Riemann-Hilbert problem method
    Guo, Ning
    Xu, Jian
    Wen, Lili
    Fan, Engui
    NONLINEAR DYNAMICS, 2021, 103 (02) : 1851 - 1868