EXPLICIT EXACT TRAVELING WAVE SOLUTIONS AND BIFURCATIONS OF THE KUNDU-ECKHAUS EQUATION

被引:0
|
作者
Zhu, Wenjing [1 ]
Xia, Yonghui [2 ]
Bai, Yuzhen [3 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2020年 / 21卷 / 03期
基金
中国国家自然科学基金;
关键词
Kundu-Eckhaus equation; exact solution; bifurcation; kink wave solution; CAMASSA-HOLM EQUATION; SPATIOTEMPORAL DYNAMICS; VARIABLE-COEFFICIENTS; OPTICAL SOLITON; PERIODIC-WAVE; EXISTENCE; DIFFUSION; MODEL; BEHAVIOR; PEAKONS;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper deals with the nonlinear complex Kundu-Eckhaus (KE) equation, a basic model in nonlinear optics which describes the propagation of solitons through the optical fiber. The bifurcation analysis is performed on the dynamic system associated to traveling wave solutions, showing the existence of periodic wave solutions, bright solitons, dark solitons, kink wave and anti-kink wave solutions, in different parametric domains. Explicit parametric representations of the traveling wave solutions are also obtained. Phase portraits and simulations are presented to illustrate the theoretical results.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 50 条
  • [31] Exact traveling wave solutions and bifurcations of the generalized derivative nonlinear Schrodinger equation
    Leta, Temesgen Desta
    Li, Jibin
    NONLINEAR DYNAMICS, 2016, 85 (02) : 1031 - 1037
  • [32] Dispersive propagation of optical solitions and solitary wave solutions of Kundu-Eckhaus dynamical equation via modified mathematical method
    Aly R. Seadawy
    Mujahid Iqbal
    Applied Mathematics-A Journal of Chinese Universities, 2023, 38 : 16 - 26
  • [33] The n-fold Darboux transformation for the Kundu-Eckhaus equation and dynamics of the smooth positon solutions
    Qiu, Deqin
    Cheng, Wenguang
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 78
  • [34] Dispersive propagation of optical solitions and solitary wave solutions of Kundu-Eckhaus dynamical equation via modified mathematical method
    Aly R.Seadawy
    Mujahid Iqbal
    AppliedMathematics:AJournalofChineseUniversities, 2023, 38 (01) : 16 - 26
  • [35] Dispersive propagation of optical solitions and solitary wave solutions of Kundu-Eckhaus dynamical equation via modified mathematical method
    Seadawy, Aly R.
    Iqbal, Mujahid
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2023, 38 (01) : 16 - 26
  • [36] BIFURCATIONS AND EXACT TRAVELING WAVE SOLUTIONS OF THE ZAKHAROV-RUBENCHIK EQUATION
    Zhang, Lijun
    Yuan, Peiying
    Fu, Jingli
    Khalique, Chaudry Masood
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (10): : 2927 - 2939
  • [37] The nth-order degenerate breather solution for the Kundu-Eckhaus equation
    Qiu, Deqin
    Cheng, Wenguang
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 13 - 21
  • [38] Optical solitons to Kundu-Eckhaus equation in birefringent fibers without four-wave mixing
    Tahir, Muhammad
    Awan, Aziz Ullah
    Rehman, Hamood Ur
    OPTIK, 2019, 199
  • [39] Dark and singular optical solitons in birefringent fibers with Kundu-Eckhaus equation by undetermined coefficients
    Vega-Guzman, Jose
    Biswas, Anjan
    Mahmood, Mohammad F.
    Zhou, Qin
    Khan, Salam
    Moshokoa, Seithuti P.
    OPTIK, 2019, 181 : 499 - 502
  • [40] Explicit exact traveling wave solutions and bifurcations of the generalized combined double sinh-cosh-Gordon equation
    Zhang, Bei
    Xia, Yonghui
    Zhu, Wenjing
    Bai, Yuzhen
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 363