EXPLICIT EXACT TRAVELING WAVE SOLUTIONS AND BIFURCATIONS OF THE KUNDU-ECKHAUS EQUATION

被引:0
|
作者
Zhu, Wenjing [1 ]
Xia, Yonghui [2 ]
Bai, Yuzhen [3 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2020年 / 21卷 / 03期
基金
中国国家自然科学基金;
关键词
Kundu-Eckhaus equation; exact solution; bifurcation; kink wave solution; CAMASSA-HOLM EQUATION; SPATIOTEMPORAL DYNAMICS; VARIABLE-COEFFICIENTS; OPTICAL SOLITON; PERIODIC-WAVE; EXISTENCE; DIFFUSION; MODEL; BEHAVIOR; PEAKONS;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper deals with the nonlinear complex Kundu-Eckhaus (KE) equation, a basic model in nonlinear optics which describes the propagation of solitons through the optical fiber. The bifurcation analysis is performed on the dynamic system associated to traveling wave solutions, showing the existence of periodic wave solutions, bright solitons, dark solitons, kink wave and anti-kink wave solutions, in different parametric domains. Explicit parametric representations of the traveling wave solutions are also obtained. Phase portraits and simulations are presented to illustrate the theoretical results.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 50 条
  • [11] Exact traveling wave solutions and bifurcations of the Biswas–Milovic equation
    Wenjing Zhu
    Jibin Li
    Nonlinear Dynamics, 2016, 84 : 1973 - 1987
  • [12] Exact traveling wave solutions and bifurcations of the dual Ito equation
    J. B. Li
    F. J. Chen
    Nonlinear Dynamics, 2015, 82 : 1537 - 1550
  • [13] Exact traveling wave solutions and bifurcations of the dual Ito equation
    Li, J. B.
    Chen, F. J.
    NONLINEAR DYNAMICS, 2015, 82 (03) : 1537 - 1550
  • [14] Optical solitons in birefringent fibers with Kundu-Eckhaus equation
    Biswas, Anjan
    Arshed, Saima
    Ekici, Mehmet
    Zhou, Qin
    Moshokoa, Seithuti P.
    Alfiras, Mohanad
    Belic, Milivoj
    OPTIK, 2019, 178 : 550 - 556
  • [15] Abundant soliton solutions for the Kundu-Eckhaus equation via tan(φ(ξ))-expansion method
    Manafian, Jalil
    Lakestani, Mehrdad
    OPTIK, 2016, 127 (14): : 5543 - 5551
  • [16] Bifurcations and Exact Traveling Wave Solutions of a Modified Nonlinear Schrodinger Equation
    Kou, KitIan
    Li, Jibin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2016, 26 (06):
  • [17] Exact traveling wave solutions and bifurcations in a nonlinear elastic rod equation
    Li, Ji-bin
    He, Tian-lan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2010, 26 (02): : 283 - 306
  • [18] Bifurcations and Exact Traveling Wave Solutions for the Generalized Alexeyev's A± Equation
    Zhou, Yan
    Zhuang, Jinsen
    Li, Jibin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (01)
  • [19] Exact traveling wave solutions and bifurcations in a nonlinear elastic rod equation
    Ji-bin Li
    Tian-lan He
    Acta Mathematicae Applicatae Sinica, English Series, 2010, 26 : 283 - 306
  • [20] Exact traveling wave solutions and bifurcations of the Biswas-Milovic equation
    Zhu, Wenjing
    Li, Jibin
    NONLINEAR DYNAMICS, 2016, 84 (04) : 1973 - 1987