EXPLICIT EXACT TRAVELING WAVE SOLUTIONS AND BIFURCATIONS OF THE KUNDU-ECKHAUS EQUATION

被引:0
|
作者
Zhu, Wenjing [1 ]
Xia, Yonghui [2 ]
Bai, Yuzhen [3 ]
机构
[1] China Jiliang Univ, Dept Math, Hangzhou 310018, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
[3] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
来源
PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE | 2020年 / 21卷 / 03期
基金
中国国家自然科学基金;
关键词
Kundu-Eckhaus equation; exact solution; bifurcation; kink wave solution; CAMASSA-HOLM EQUATION; SPATIOTEMPORAL DYNAMICS; VARIABLE-COEFFICIENTS; OPTICAL SOLITON; PERIODIC-WAVE; EXISTENCE; DIFFUSION; MODEL; BEHAVIOR; PEAKONS;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper deals with the nonlinear complex Kundu-Eckhaus (KE) equation, a basic model in nonlinear optics which describes the propagation of solitons through the optical fiber. The bifurcation analysis is performed on the dynamic system associated to traveling wave solutions, showing the existence of periodic wave solutions, bright solitons, dark solitons, kink wave and anti-kink wave solutions, in different parametric domains. Explicit parametric representations of the traveling wave solutions are also obtained. Phase portraits and simulations are presented to illustrate the theoretical results.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 50 条
  • [1] Higher-order rogue wave solutions of the Kundu-Eckhaus equation
    Wang, Xin
    Yang, Bo
    Chen, Yong
    Yang, Yunqing
    PHYSICA SCRIPTA, 2014, 89 (09)
  • [2] The Bifurcations of Traveling Wave Solutions of the Kundu Equation
    Yi, Yating
    Liu, Zhengrong
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [3] Optical solitary wave solutions in generalized determinant form for Kundu-Eckhaus equation
    Yue, Gui-Min
    Meng, Xiang-Hua
    RESULTS IN PHYSICS, 2023, 49
  • [4] The Darboux transformation of the Kundu-Eckhaus equation
    Qiu, Deqin
    He, Jingsong
    Zhang, Yongshuai
    Porsezian, K.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2015, 471 (2180):
  • [5] BIFURCATIONS AND EXACT TRAVELING WAVE SOLUTIONS OF GERDJIKOV-IVANOV EQUATION WITH PERTURBATION TERMS
    Zhu, Wenjing
    Xia, Yonghui
    Bai, Yuzhen
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2020, 25 (5-6) : 279 - 314
  • [6] New solitary wave and computational solitons for Kundu-Eckhaus equation
    Jaradat, M. M. M.
    Batool, Amna
    Butt, Asma Rashid
    Raza, Nauman
    RESULTS IN PHYSICS, 2022, 43
  • [7] The dressing method and dynamics of soliton solutions for the Kundu-Eckhaus equation
    Chai, Xuedong
    Zhang, Yufeng
    NONLINEAR DYNAMICS, 2023, 111 (06) : 5655 - 5669
  • [8] A partial derivative-dressing approach to the Kundu-Eckhaus equation
    Luo, Jinghua
    Fan, Engui
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 167
  • [9] BIFURCATIONS AND EXACT SOLUTIONS FOR THE KUNDU EQUATION: DYNAMICAL
    Chen, Meixiang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (06): : 3377 - 3384
  • [10] Self-localized solutions of the Kundu-Eckhaus equation in nonlinear waveguides
    Bayindir, Cihan
    RESULTS IN PHYSICS, 2019, 14