Genetic stability of bone marrow-derived human mesenchymal stromal cells in the Quantum System

被引:38
|
作者
Jones, Mark [1 ]
Varella-Garcia, Marileila [2 ]
Skokan, Margaret [2 ]
Bryce, Steven [3 ]
Schowinsky, Jeffrey [4 ]
Peters, Rebecca [1 ]
Vang, Boah [1 ]
Brecheisen, Michelle [1 ]
Startz, Thomas [1 ]
Frank, Nathan [1 ]
Nankervis, Brian [1 ]
机构
[1] Terumo BCT Inc, Lakewood, CO 80215 USA
[2] Univ Colorado Denver, Sch Med, Div Med Oncol, Aurora, CO USA
[3] Litron Labs, Rochester, NY USA
[4] Univ Colorado Hosp, Dept Pathol, Aurora, CO USA
关键词
cell proliferation; chromosome; mesenchymal stromal cell; micronucleus; spectral karyotyping; xenograft; VITRO MICRONUCLEUS ASSAY; IN-VITRO; STEM-CELLS; FLOW-CYTOMETRY; DAMAGE; TRANSPLANTS; INSTABILITY; POPULATION; RESTORES; CULTURES;
D O I
10.1016/j.jcyt.2013.05.024
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Background aims. The Quantum Cell Expansion System (Quantum; Terumo BCT, Inc, Lakewood, CO, USA) is a novel hollow fiber-based device that automates and closes the cell culture process, reducing labor intensive tasks such as manual cell culture feeding and harvesting. The manual cell selection and expansion processes for the production of clinical-scale quantities of bone marrow-derived human mesenchymal stromal cells (BM-hMSCs) have been successfully translated onto the Quantum platform previously. The formerly static, manual, in vitro process performed primarily on tissue culture polystyrene substrates may raise the question of whether BM-hM.SCs cultured on a hollow fiber platform yields comparable cell quality. Methods. A rigorous battery of assays was used to determine the genetic stability of BM-hMSCs selected and produced with the Quantum. In this study, genetic stability was determined by assessing spectral karyotype, micronucleus formation and tumorigenicity to resolve chromosomal aberrations in the stem cell population. Cell phenotype, adherent growth kinetics and tri-lineage differentiation were also evaluated. HMSC bone marrow aspirates, obtained from three approved donors, were expanded in parallel using T225 culture flasks and the Quantum. Results. BM-hMSCs harvested from the Quantum demonstrated immunophenotype, morphology and tri-lineage differentiation capacity characteristics consistent with the International Society of Cell Therapy standard for hMSCs. Cell populations showed no malignant neoplastic formation in athymic mice 60 days post-transplant, no clonal chromosomal aberrations were observed and no DNA damage was found as measured by micronucleus formation. Conclusions. Quantum-produced BM-hMSCs are of comparable quality and demonstrate analogous genetic stability to BM-hMSCs cultured on tissue culture polystyrene substrates.
引用
收藏
页码:1323 / 1339
页数:17
相关论文
共 50 条
  • [1] Molecular fingerprint of subsets of human bone marrow-derived mesenchymal stromal cells
    Kuci, Selim
    Kuci, Zyrafete
    Schaefer, Richard
    Spohn, Gabriele
    Winter, Stefan
    Klingebiel, Thomas
    Bader, Peter
    BONE MARROW TRANSPLANTATION, 2018, 53 : 683 - 683
  • [2] Effect of High BMI on Human Bone Marrow-Derived Mesenchymal Stromal Cells
    Zong, Qiang
    Bundkirchen, Katrin
    Neunaber, Claudia
    Noack, Sandra
    CELL TRANSPLANTATION, 2024, 33
  • [3] Human bone marrow-derived mesenchymal stromal cells increase glioblastoma radioresistance
    Strack, Maren
    Ruehle, Alexander
    Heiland, Dieter Henrik
    Schnell, Oliver
    Grosu, Anca-L.
    Nicolay, Nils Henrik
    ONCOLOGY RESEARCH AND TREATMENT, 2022, 45 (SUPPL 3) : 46 - 46
  • [4] Effect of bone marrow-derived mesenchymal stromal cells on hepatoma
    Abd-Allah, Somia H.
    Shalaby, Sally M.
    El-Shal, Amal S.
    Abd Elkader, Eman
    Hussein, Samia
    Emam, Emad
    Mazen, Nehad F.
    El Kateb, Mohammed
    Atfy, Mha
    CYTOTHERAPY, 2014, 16 (09) : 1197 - 1206
  • [5] Endogenous bone morphogenetic proteins in human bone marrow-derived multipotent mesenchymal stromal cells
    Seib, F. Philipp
    Franke, Martina
    Jing, Duohui
    Werner, Carsten
    Bornhaeuser, Martin
    EUROPEAN JOURNAL OF CELL BIOLOGY, 2009, 88 (05) : 257 - 271
  • [6] Expansion of human bone marrow-derived mesenchymal stromal cells with enhanced immunomodulatory properties
    Neo, Shu Hui
    Her, Zhisheng
    Othman, Rashidah
    Tee, Ching Ann
    Ong, Li Ching
    Wang, Yuehua
    Tan, Irwin
    Tan, Jaylen
    Yang, Yanmeng
    Yang, Zheng
    Chen, Qingfeng
    Boyer, Laurie A.
    STEM CELL RESEARCH & THERAPY, 2023, 14 (01)
  • [7] Data on nitric oxide production by human bone marrow-derived mesenchymal stromal cells
    Najar, Mehdi
    Fayyad-Kazan, Mohammad
    Fayyad-Kazan, Hussein
    Meuleman, Nathalie
    Bron, Dominique
    Lagneaux, Laurence
    DATA IN BRIEF, 2016, 8 : 1111 - 1114
  • [8] Expansion of human bone marrow-derived mesenchymal stromal cells with enhanced immunomodulatory properties
    Shu Hui Neo
    Zhisheng Her
    Rashidah Othman
    Ching Ann Tee
    Li Ching Ong
    Yuehua Wang
    Irwin Tan
    Jaylen Tan
    Yanmeng Yang
    Zheng Yang
    Qingfeng Chen
    Laurie A. Boyer
    Stem Cell Research & Therapy, 14
  • [9] ENHANCED TRANSFECTION OF HUMAN BONE MARROW-DERIVED MESENCHYMAL STROMAL CELLS WITH MESSENGER RNA
    Pennati, A.
    Pagenkopf, A. C.
    Kopp, L.
    Galipeau, J.
    CYTOTHERAPY, 2024, 26 (06) : S57 - S58
  • [10] Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury
    Parr, A. M.
    Tator, C. H.
    Keating, A.
    BONE MARROW TRANSPLANTATION, 2007, 40 (07) : 609 - 619