Spark Plasma Sintering of Aluminosilicate Ceramic Matrices for Immobilization of Cesium Radionuclides

被引:36
|
作者
Shichalin, O. O. [1 ,2 ]
Papynov, E. K. [1 ,2 ]
Maiorov, V. Yu [1 ]
Belov, A. A. [1 ,2 ]
Modin, E. B. [1 ,2 ]
Buravlev, I. Yu [1 ,2 ]
Azarova, Yu A. [1 ]
Golub, A., V [1 ]
Gridasova, E. A. [2 ]
Sukhorada, A. E. [2 ]
Tananaev, I. G. [1 ,2 ,3 ]
Avramenko, V. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Far Eastern Branch, Inst Chem, Pr 100,Letiya Vladivostoka 159, Vladivostok 690022, Russia
[2] Far Eastern Fed Univ, Ul Sukhanova 8, Vladivostok 690091, Russia
[3] Russian Acad Sci, Frumkin Inst Phys Chem & Electrochem, Leninskii Pr 31,Korp 4, Moscow 119071, Russia
基金
俄罗斯基础研究基金会; 俄罗斯科学基金会;
关键词
ceramic matrices; nuclear ceramic; glass-ceramic; radionuclide immobilization; radionuclide sources; spark plasma sintering; PHOSPHATES;
D O I
10.1134/S1066362219020097
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The possibility of using spark plasma sintering (SPS) for preparing high-density ceramic matrices suitable for firm long-term immobilization of Cs radionuclides was examined. The kinetic features of sintering and phase formation of natural zeolite from the Far Eastern deposit, loaded with the adsorbed Cs ions (surrogate of radiocesium), under nonequilibrium SPS conditions were analyzed. The optimum SPS conditions were determined, and high-quality glass-ceramic matrices based on zeolites from various deposits, characterized by high density (98.5-99.8% of theoretical density), high compression strength (470-490 MPa), Cs content of up to 20.8 wt%, and low Cs leach rates (<10(-5)-10(-6) g cm(-2) day(-1)), were prepared. The SPS technology shows promise for radioactive waste management (in particular, for solidification of spent radioactive sorbents) and radioisotope industry (in particular, for production of special-purpose radionuclide sources).
引用
收藏
页码:185 / 191
页数:7
相关论文
共 50 条
  • [41] Effect of Liquid Phase on the Spark Plasma Sintering Process of ZnO Ceramic
    Zhang, Jiexin
    Kang, Shenglin
    Zhao, Xuetong
    Sun, Jianjie
    Liang, Jie
    Chen, Han
    Yang, Lijun
    Liao, Ruijin
    Xiyou Jinshu Cailiao Yu Gongcheng/Rare Metal Materials and Engineering, 2021, 50 (10): : 3634 - 3639
  • [42] Electric field effects during spark plasma sintering of ceramic nanoparticles
    Chaim, R.
    JOURNAL OF MATERIALS SCIENCE, 2013, 48 (01) : 502 - 510
  • [43] Preparation of AlN ceramic bonded carbon by gelcasting and spark plasma sintering
    Chen, Weiwu
    Miyamoto, Yoshinari
    Matsumoto, Taihei
    Tojo, Tetsuro
    CARBON, 2010, 48 (12) : 3399 - 3404
  • [44] SPARK PLASMA SINTERING OF CERAMIC MATERIALSBASED ON RARE-EARTH ZIRCONATES
    Oglezneva, S. A.
    Porozova, S. E.
    Kachenyuk, M. N.
    Kul'met'eva, V. B.
    Smetkin, A. A.
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2023, 63 (06) : 659 - 664
  • [45] Performances of CaSiO3 ceramic sintered by Spark plasma sintering
    Wan, Xianghui
    Hu, Anmin
    Li, Ming
    Chang, Chengkang
    Mao, Dali
    MATERIALS CHARACTERIZATION, 2008, 59 (03) : 256 - 260
  • [46] Properties of mullite-zirconium ceramic obtained by spark plasma sintering
    A. V. Hmelov
    I. Shteins
    Glass and Ceramics, 2012, 68 : 399 - 404
  • [47] Functionally graded ceramic material prepared by spark plasma sintering (SPS)
    Kachaev, A. A.
    Lebedeva, Yu. E.
    Osin, I. V.
    Vaganova, M. L.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2017, 90 (07) : 1117 - 1121
  • [48] Iron Pyrophosphate Matrix as a Form for Immobilization of Cesium Radionuclides
    Kuznetsov, R. A.
    Gamuletskaya, O. A.
    Bogdanov, R. V.
    RADIOCHEMISTRY, 2013, 55 (06) : 634 - 638
  • [49] Production of Medical Radionuclides: Spark Plasma Sintering Technique for Cyclotron Solid Target Manufacturing
    Cisternino, S.
    Sciacca, G.
    El Idrissi, M.
    Anselmi-Tamburini, U.
    Bortolussi, S.
    Gennari, C.
    Calliari, I
    Esposito, I
    METALLURGIA ITALIANA, 2022, (11-12): : 24 - 30
  • [50] Numerical model for sparking and plasma formation during spark plasma sintering of ceramic compacts
    Marder, R.
    Estournes, C.
    Chevallier, G.
    Chaim, R.
    JOURNAL OF MATERIALS SCIENCE, 2015, 50 (13) : 4636 - 4645