Spark Plasma Sintering of Aluminosilicate Ceramic Matrices for Immobilization of Cesium Radionuclides

被引:40
作者
Shichalin, O. O. [1 ,2 ]
Papynov, E. K. [1 ,2 ]
Maiorov, V. Yu [1 ]
Belov, A. A. [1 ,2 ]
Modin, E. B. [1 ,2 ]
Buravlev, I. Yu [1 ,2 ]
Azarova, Yu A. [1 ]
Golub, A., V [1 ]
Gridasova, E. A. [2 ]
Sukhorada, A. E. [2 ]
Tananaev, I. G. [1 ,2 ,3 ]
Avramenko, V. A. [1 ,2 ]
机构
[1] Russian Acad Sci, Far Eastern Branch, Inst Chem, Pr 100,Letiya Vladivostoka 159, Vladivostok 690022, Russia
[2] Far Eastern Fed Univ, Ul Sukhanova 8, Vladivostok 690091, Russia
[3] Russian Acad Sci, Frumkin Inst Phys Chem & Electrochem, Leninskii Pr 31,Korp 4, Moscow 119071, Russia
基金
俄罗斯科学基金会; 俄罗斯基础研究基金会;
关键词
ceramic matrices; nuclear ceramic; glass-ceramic; radionuclide immobilization; radionuclide sources; spark plasma sintering; PHOSPHATES;
D O I
10.1134/S1066362219020097
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The possibility of using spark plasma sintering (SPS) for preparing high-density ceramic matrices suitable for firm long-term immobilization of Cs radionuclides was examined. The kinetic features of sintering and phase formation of natural zeolite from the Far Eastern deposit, loaded with the adsorbed Cs ions (surrogate of radiocesium), under nonequilibrium SPS conditions were analyzed. The optimum SPS conditions were determined, and high-quality glass-ceramic matrices based on zeolites from various deposits, characterized by high density (98.5-99.8% of theoretical density), high compression strength (470-490 MPa), Cs content of up to 20.8 wt%, and low Cs leach rates (<10(-5)-10(-6) g cm(-2) day(-1)), were prepared. The SPS technology shows promise for radioactive waste management (in particular, for solidification of spent radioactive sorbents) and radioisotope industry (in particular, for production of special-purpose radionuclide sources).
引用
收藏
页码:185 / 191
页数:7
相关论文
共 20 条
[1]  
Aloy AS, 2013, ISTOCHNIKI GAMMA IZL
[2]  
[Anonymous], 1996, R 50926 96 SOLIDIFIE
[3]   Immobilization of simulated high-level liquid wastes in sintered borosilicate, aluminosilicate and aluminoborosilicate glasses [J].
Bevilacqua, AM ;
deBernasconi, NBM ;
Russo, DO ;
Audero, MA ;
Sterba, ME ;
Heredia, AD .
JOURNAL OF NUCLEAR MATERIALS, 1996, 229 (01) :187-193
[4]  
Breck D. W, 1974, Zeolite molecular sieves: structure, chemistry, and use
[5]   High-temperature investigations of the rare earth NZP phosphates R1/3Zr2(PO4)3 (R=La, Nd, Eu, Lu) by drop calorimetry [J].
Bykov, D. M. ;
Konings, R. J. M. ;
Orlova, A. I. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2007, 439 (1-2) :376-379
[6]  
Caurant D, 2009, GLASSES GLASS CERAMI, P359
[7]   Field-Assisted Sintering Technology/Spark Plasma Sintering: Mechanisms, Materials, and Technology Developments [J].
Guillon, Olivier ;
Gonzalez-Julian, Jesus ;
Dargatz, Benjamin ;
Kessel, Tobias ;
Schierning, Gabi ;
Raethel, Jan ;
Herrmann, Mathias .
ADVANCED ENGINEERING MATERIALS, 2014, 16 (07) :830-849
[8]  
Iucolano F, 2008, STUD SURF SCI CATAL, V174, P537
[9]   Synthesis and study of the chemical stability and strength of zirconium phosphates with the structure of langbeinite with imitators of high-level radioactive waste (HLRW) [J].
Martynov, K. V. ;
Nekrasov, A. N. ;
Kotel'nikov, A. R. ;
Tananaev, I. G. .
GLASS PHYSICS AND CHEMISTRY, 2017, 43 (01) :75-82
[10]   Spark Plasma Sintering of simulated radioisotope materials within tungsten cermets [J].
O'Brien, R. C. ;
Ambrosi, R. M. ;
Bannister, N. P. ;
Howe, S. D. ;
Atkinson, H. V. .
JOURNAL OF NUCLEAR MATERIALS, 2009, 393 (01) :108-113