Microscopic theory of spin Hall magnetoresistance

被引:16
作者
Kato, T. [1 ]
Ohnuma, Y. [2 ]
Matsuo, M. [2 ,3 ,4 ,5 ]
机构
[1] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[2] Univ Chinese Acad Sci, Kavli Inst Theoret Sci, Beijing 100190, Peoples R China
[3] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
[4] RIKEN, Ctr Emergent Matter Sci, Wako, Saitama 3510198, Japan
[5] Japan Atom Energy Agcy, Adv Sci Res Ctr, Tokai, Ibaraki 3191195, Japan
关键词
ROOM-TEMPERATURE; NIO;
D O I
10.1103/PhysRevB.102.094437
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider a microscopic theory for the spin Hall magnetoresistance (SMR). We generally formulate a spin conductance at an interface between a normal metal and a magnetic insulator in terms of spin susceptibilities. We reveal that SMR is composed of static and dynamic parts. The static part, which is almost independent of the temperature, originates from spin flip caused by an interfacial exchange coupling. However, the dynamic part, which is induced by the creation or annihilation of magnons, has an opposite sign from the static part. By the spin-wave approximation, we predict that the latter results in a nontrivial sign change in the SMR signal at a finite temperature. In addition, we derive the Onsager relation between spin conductance and thermal spin-current noise.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Magnetoresistance in an All-Organic-Based Spin Valve
    Li, Bin
    Kao, Chi-Yueh
    Yoo, Jung-Woo
    Prigodin, Vladimir N.
    Epstein, Arthur J.
    ADVANCED MATERIALS, 2011, 23 (30) : 3382 - +
  • [42] Interlayer dependent polarity of magnetoresistance in graphene spin valves
    Iqbal, M. Z.
    Iqbal, M. W.
    Jin, Xiaozhan
    Hwang, Changyong
    Eom, Jonghwa
    JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (02) : 298 - 302
  • [43] Giant fluctuations of local magnetoresistance of organic spin valves
    Roundy, R. C.
    Nemirovsky, D.
    Kagalovsky, V.
    Raikh, M. E.
    SYNTHETIC METALS, 2015, 208 : 13 - 16
  • [44] Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures
    Savero Torres, W.
    Sierra, J. F.
    Benitez, L. A.
    Bonell, F.
    Costache, M. V.
    Valenzuela, S. O.
    2D MATERIALS, 2017, 4 (04):
  • [45] Spin-Spin Interactions in Organic Magnetoresistance Probed by Angle-Dependent Measurements
    Wagemans, W.
    Schellekens, A. J.
    Kemper, M.
    Bloom, F. L.
    Bobbert, P. A.
    Koopmans, B.
    PHYSICAL REVIEW LETTERS, 2011, 106 (19)
  • [46] Moderate positive spin Hall angle in uranium
    Singh, Simranjeet
    Anguera, Marta
    del Barco, Enrique
    Springell, Ross
    Miller, Casey W.
    APPLIED PHYSICS LETTERS, 2015, 107 (23)
  • [47] Temperature Dependence of Spin Hall Angle of Palladium
    Tang, Zhenyao
    Kitamura, Yuta
    Shikoh, Eiji
    Ando, Yuichiro
    Shinjo, Teruya
    Shiraishi, Masashi
    APPLIED PHYSICS EXPRESS, 2013, 6 (08)
  • [48] Quantized photonic spin Hall effect in graphene
    Cai, Liang
    Liu, Mengxia
    Chen, Shizhen
    Liu, Yachao
    Shu, Weixing
    Luo, Hailu
    Wen, Shuangchun
    PHYSICAL REVIEW A, 2017, 95 (01)
  • [49] Observation of the inverse spin Hall effect in silicon
    Ando, Kazuya
    Saitoh, Eiji
    NATURE COMMUNICATIONS, 2012, 3
  • [50] Theory of Organic Magnetoresistance in Disordered Organic Semiconductors
    Harmon, Nicholas J.
    Flatte, Michael E.
    SPINTRONICS V, 2012, 8461