Krein signature for instability of PT-symmetric states

被引:2
作者
Chernyavsky, Alexander [1 ]
Pelinovsky, Dmitry E. [1 ,2 ]
机构
[1] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
[2] Nizhnii Novgorod State Tech Univ, Dept Appl Math, Nizhnii Novgorod 603950, Russia
关键词
PT-symmetry; Krein signature; Nonlinear Schrodinger equation; WAVES; REAL;
D O I
10.1016/j.physd.2018.01.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Krein quantity is introduced for isolated neutrally stable eigenvalues associated with the stationary states in the PT-symmetric nonlinear Schrodinger equation. Krein quantity is real and nonzero for simple eigenvalues but it vanishes if two simple eigenvalues coalesce into a defective eigenvalue. A necessary condition for bifurcation of unstable eigenvalues from the defective eigenvalue is proved. This condition requires the two simple eigenvalues before the coalescence point to have opposite Krein signatures. The theory is illustrated with several numerical examples motivated by recent publications in physics literature. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 59
页数:12
相关论文
共 40 条
  • [31] Transverse Instability of Line Solitary Waves in Massive Dirac Equations
    Pelinovsky, Dmitry
    Shimabukuro, Yusuke
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2016, 26 (02) : 365 - 403
  • [32] Reed M., 1979, Methods of modern mathematical physics. IV. Analysis of operators
  • [33] Bifurcation diagram and pattern formation of phase slip centers in superconducting wires driven with electric currents
    Rubinstein, J.
    Sternberg, P.
    Ma, Q.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (16)
  • [34] Physical realization of PT-symmetric potential scattering in a planar slab waveguide
    Ruschhaupt, A
    Delgado, F
    Muga, JG
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (09): : L171 - L176
  • [35] NEW SOLUBLE ENERGY BAND PROBLEM
    SCARF, FL
    [J]. PHYSICAL REVIEW, 1958, 112 (04): : 1137 - 1140
  • [36] PT-symmetric electronics
    Schindler, J.
    Lin, Z.
    Lee, J. M.
    Ramezani, H.
    Ellis, F. M.
    Kottos, T.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)
  • [37] ON THE STABILITY OF STANDING WAVES FOR PT SYMMETRIC SCHRODINGER AND KLEIN-GORDON EQUATIONS IN HIGHER SPACE DIMENSIONS
    Stanislavova, Milena
    Stefanov, Atanas
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (12) : 5273 - 5285
  • [38] Nonlinear switching and solitons in PT-symmetric photonic systems
    Suchkov, Sergey V.
    Sukhorukov, Andrey A.
    Huang, Jiahao
    Dmitriev, Sergey V.
    Lee, Chaohong
    Kivshar, Yuri S.
    [J]. LASER & PHOTONICS REVIEWS, 2016, 10 (02) : 177 - 213
  • [39] Weierstrass K., 1967, MATH WERKE, V1
  • [40] Nonlinear modes in the harmonic PT-symmetric potential
    Zezyulin, Dmitry A.
    Konotop, Vladimir V.
    [J]. PHYSICAL REVIEW A, 2012, 85 (04):