Krein signature for instability of PT-symmetric states

被引:2
作者
Chernyavsky, Alexander [1 ]
Pelinovsky, Dmitry E. [1 ,2 ]
机构
[1] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
[2] Nizhnii Novgorod State Tech Univ, Dept Appl Math, Nizhnii Novgorod 603950, Russia
关键词
PT-symmetry; Krein signature; Nonlinear Schrodinger equation; WAVES; REAL;
D O I
10.1016/j.physd.2018.01.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Krein quantity is introduced for isolated neutrally stable eigenvalues associated with the stationary states in the PT-symmetric nonlinear Schrodinger equation. Krein quantity is real and nonzero for simple eigenvalues but it vanishes if two simple eigenvalues coalesce into a defective eigenvalue. A necessary condition for bifurcation of unstable eigenvalues from the defective eigenvalue is proved. This condition requires the two simple eigenvalues before the coalescence point to have opposite Krein signatures. The theory is illustrated with several numerical examples motivated by recent publications in physics literature. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:48 / 59
页数:12
相关论文
共 40 条
  • [1] Dark solitons and vortices in PT-symmetric nonlinear media: From spontaneous symmetry breaking to nonlinear PT phase transitions
    Achilleos, V.
    Kevrekidis, P. G.
    Frantzeskakis, D. J.
    Carretero-Gonzalez, R.
    [J]. PHYSICAL REVIEW A, 2012, 86 (01):
  • [2] Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex PT-invariant potential
    Ahmed, Z
    [J]. PHYSICS LETTERS A, 2001, 282 (06) : 343 - 348
  • [3] Solitons in PT - symmetric ladders of optical waveguides
    Alexeeva, N. V.
    Barashenkov, I. V.
    Kivshar, Y. S.
    [J]. NEW JOURNAL OF PHYSICS, 2017, 19
  • [4] Optical solitons in PT-symmetric nonlinear couplers with gain and loss
    Alexeeva, N. V.
    Barashenkov, I. V.
    Sukhorukov, Andrey A.
    Kivshar, Yuri S.
    [J]. PHYSICAL REVIEW A, 2012, 85 (06):
  • [5] [Anonymous], 2000, SIAM
  • [6] [Anonymous], 1995, APPL MATH SCI
  • [7] A new PT-symmetric complex Hamiltonian with a real spectrum
    Bagchi, B
    Roychoudhury, R
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (01): : L1 - L3
  • [8] Exactly Solvable Wadati Potentials in the PT-Symmetric Gross-Pitaevskii Equation
    Barashenkov, I. V.
    Zezyulin, D. A.
    Konotop, V. V.
    [J]. NON-HERMITIAN HAMILTONIANS IN QUANTUM PHYSICS, 2016, 184 : 143 - 155
  • [9] Making sense of non-Hermitian Hamiltonians
    Bender, Carl M.
    [J]. REPORTS ON PROGRESS IN PHYSICS, 2007, 70 (06) : 947 - 1018
  • [10] Observation of PT phase transition in a simple mechanical system
    Bender, Carl M.
    Berntson, Bjorn K.
    Parker, David
    Samuel, E.
    [J]. AMERICAN JOURNAL OF PHYSICS, 2013, 81 (03) : 173 - 179