Inference of Bacterial Small RNA Regulatory Networks and Integration with Transcription Factor-Driven Regulatory Networks

被引:13
作者
Arrieta-Ortiz, Mario L. [1 ,2 ]
Hafemeister, Christoph [1 ]
Shuster, Bentley [1 ]
Baliga, Nitin S. [2 ]
Bonneau, Richard [1 ,3 ,4 ]
Eichenberger, Patrick [1 ]
机构
[1] NYU, Dept Biol, Ctr Genom & Syst Biol, New York, NY 10003 USA
[2] Inst Syst Biol, Seattle, WA USA
[3] Flatiron Inst, Ctr Computat Biol, New York, NY 10010 USA
[4] NYU, Ctr Data Sci, New York, NY 10003 USA
关键词
gene networks; global regulation; small RNAs; IRON-SPARING RESPONSE; ESCHERICHIA-COLI; PSEUDOMONAS-AERUGINOSA; BACILLUS-SUBTILIS; FUNCTIONAL-CHARACTERIZATION; TARGET PREDICTION; GENE-EXPRESSION; NONCODING RNA; SOLUBLE-RNAS; IDENTIFICATION;
D O I
10.1128/mSystems.00057-20
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Small noncoding RNAs (sRNAs) are key regulators of bacterial gene expression. Through complementary base pairing, sRNAs affect mRNA stability and translation efficiency. Here, we describe a network inference approach designed to identify sRNA-mediated regulation of transcript levels. We use existing transcriptional data sets and prior knowledge to infer sRNA regulons using our network inference tool, the inferelator. This approach produces genome-wide gene regulatory networks that include contributions by both transcription factors and sRNAs. We show the benefits of estimating and incorporating sRNA activities into network inference pipelines using available experimental data. We also demonstrate how these estimated sRNA regulatory activities can be mined to identify the experimental conditions where sRNAs are most active. We uncover 45 novel experimentally supported sRNA-mRNA interactions in Escherichia coil, outperforming previous network-based efforts. Additionally, our pipeline complements sequence-based sRNA-mRNA interaction prediction methods by adding a data-driven filtering step. Finally, we show the general applicability of our approach by identifying 24 novel, experimentally supported, sRNA-mRNA interactions in Pseudomonas aeruginosa, Staphylococcus aureus, and Bacillus subtilis. Overall, our strategy generates novel insights into the functional context of sRNA regulation in multiple bacterial species. IMPORTANCE Individual bacterial genomes can have dozens of small noncoding RNAs with largely unexplored regulatory functions. Although bacterial sRNAs influence a wide range of biological processes, including antibiotic resistance and pathogenicity, our current understanding of sRNA-mediated regulation is far from complete. Most of the available information is restricted to a few well-studied bacterial species; and even in those species, only partial sets of sRNA targets have been characterized in detail. To close this information gap, we developed a computational strategy that takes advantage of available transcriptional data and knowledge about validated and putative sRNA-mRNA interactions for inferring expanded sRNA reguIons. Our approach facilitates the identification of experimentally supported novel interactions while filtering out false-positive results. Due to its data-driven nature, our method prioritizes biologically relevant interactions among lists of candidate sRNA-target pairs predicted in silico from sequence analysis or derived from sRNA-mRNA binding experiments.
引用
收藏
页数:19
相关论文
共 85 条
  • [1] THE DIPEPTIDE PERMEASE OF ESCHERICHIA-COLI CLOSELY RESEMBLES OTHER BACTERIAL TRANSPORT-SYSTEMS AND SHOWS GROWTH-PHASE-DEPENDENT EXPRESSION
    ABOUHAMAD, WN
    MANSON, MD
    [J]. MOLECULAR MICROBIOLOGY, 1994, 14 (05) : 1077 - 1092
  • [2] Functional characterization of somatic mutations in cancer using network-based inference of protein activity
    Alvarez, Mariano J.
    Shen, Yao
    Giorgi, Federico M.
    Lachmann, Alexander
    Ding, B. Belinda
    Ye, B. Hilda
    Califano, Andrea
    [J]. NATURE GENETICS, 2016, 48 (08) : 838 - +
  • [3] An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network
    Arrieta-Ortiz, Mario L.
    Hafemeister, Christoph
    Bate, Ashley Rose
    Chu, Timothy
    Greenfield, Alex
    Shuster, Bentley
    Barry, Samantha N.
    Gallitto, Matthew
    Liu, Brian
    Kacmarczyk, Thadeous
    Santoriello, Francis
    Chen, Jie
    Rodrigues, Christopher D. A.
    Sato, Tsutomu
    Rudner, David Z.
    Driks, Adam
    Bonneau, Richard
    Eichenberger, Patrick
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2015, 11 (11)
  • [4] A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes
    Baldi, P
    Long, AD
    [J]. BIOINFORMATICS, 2001, 17 (06) : 509 - 519
  • [5] Iron and Pseudomonas aeruginosa biofilm formation
    Banin, E
    Vasil, ML
    Greenberg, EP
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (31) : 11076 - 11081
  • [6] Multiple factors dictate target selection by Hfq-binding small RNAs
    Beisel, Chase L.
    Updegrove, Taylor B.
    Janson, Ben J.
    Storz, Gisela
    [J]. EMBO JOURNAL, 2012, 31 (08) : 1961 - 1974
  • [7] The Base-Pairing RNA Spot 42 Participates in a Multioutput Feedforward Loop to Help Enact Catabolite Repression in Escherichia coli
    Beisel, Chase L.
    Storz, Gisela
    [J]. MOLECULAR CELL, 2011, 41 (03) : 286 - 297
  • [8] Experimental discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabolism
    Bohn, Chantal
    Rigoulay, Candice
    Chabelskaya, Svetlana
    Sharma, Cynthia M.
    Marchais, Antonin
    Skorski, Patricia
    Borezee-Durant, Elise
    Barbet, Romain
    Jacquet, Eric
    Jacq, Annick
    Gautheret, Daniel
    Felden, Brice
    Vogel, Joerg
    Bouloc, Philippe
    [J]. NUCLEIC ACIDS RESEARCH, 2010, 38 (19) : 6620 - 6636
  • [9] Escherichia coli malic enzymes:: Two isoforms with substantial differences in kinetic properties, metabolic regulation, and structure
    Bologna, Federico P.
    Andreo, Carlos S.
    Drincovich, Maria F.
    [J]. JOURNAL OF BACTERIOLOGY, 2007, 189 (16) : 5937 - 5946
  • [10] Time-series analysis of the transcriptome and proteome of Escherichia coli upon glucose repression
    Borirak, Orawan
    Rolfe, Matthew D.
    de Koning, Leo J.
    Hoefsloot, Huub C. J.
    Bekker, Martijn
    Dekker, Henk L.
    Roseboom, Winfried
    Green, Jeffrey
    de Koster, Chris G.
    Hellingwerf, Klaas J.
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2015, 1854 (10): : 1269 - 1279