Supporting the Visual Analysis of Dynamic Networks by Clustering associated Temporal Attributes

被引:31
|
作者
Hadlak, Steffen [1 ]
Schumann, Heidrun [1 ]
Cap, Clemens H. [1 ]
Wollenberg, Till [1 ]
机构
[1] Univ Rostock, D-18055 Rostock, Germany
关键词
Dynamic networks; visualization; supergraph clustering; EXPLORATION; TIME;
D O I
10.1109/TVCG.2013.198
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The visual analysis of dynamic networks is a challenging task. In this paper, we introduce a new approach supporting the discovery of substructures sharing a similar trend over time by combining computation, visualization and interaction. With existing techniques, their discovery would be a tedious endeavor because of the number of nodes, edges as well as time points to be compared. First, on the basis of the supergraph, we therefore group nodes and edges according to their associated attributes that are changing over time. Second, the supergraph is visualized to provide an overview of the groups of nodes and edges with similar behavior over time in terms of their associated attributes. Third, we provide specific interactions to explore and refine the temporal clustering, allowing the user to further steer the analysis of the dynamic network. We demonstrate our approach by the visual analysis of a large wireless mesh network.
引用
收藏
页码:2267 / 2276
页数:10
相关论文
共 50 条
  • [1] Multiscale Snapshots: Visual Analysis of Temporal Summaries in Dynamic Graphs
    Cakmak, Eren
    Schlegel, Udo
    Jackle, Dominik
    Keim, Daniel
    Schreck, Tobias
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (02) : 517 - 527
  • [2] Visual querying and analysis of temporal fiscal networks
    Didimo, Walter
    Grilli, Luca
    Liotta, Giuseppe
    Montecchiani, Fabrizio
    Pagliuca, Daniele
    INFORMATION SCIENCES, 2019, 505 : 406 - 421
  • [3] Wavelet-Based Visual Analysis of Dynamic Networks
    Dal Col, Alcebiades
    Valdivia, Paola
    Petronetto, Fabiano
    Dias, Fabio
    Silva, Claudio T.
    Gustavo Nonato, L.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (08) : 2456 - 2469
  • [4] Motif-Based Visual Analysis of Dynamic Networks
    Cakmak, Eren
    Fuchs, Johannes
    Jaeckle, Dominik
    Schreck, Tobias
    Brandes, Ulrik
    Keim, Daniel
    2022 IEEE VISUALIZATION IN DATA SCIENCE (VDS 2022), 2022, : 17 - 26
  • [5] MoNetExplorer: A Visual Analytics System for Analyzing Dynamic Networks With Temporal Network Motifs
    Jung, Seokweon
    Shin, Donghwa
    Jeon, Hyeon
    Choe, Kiroong
    Seo, Jinwook
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (10) : 6725 - 6739
  • [6] Temporal Branching Approach for Visual Exploration of Simulation Process in Dynamic Networks
    Mukhina, Ksenia
    Guleva, Valentina
    Karsakov, Andrey
    5TH INTERNATIONAL YOUNG SCIENTIST CONFERENCE ON COMPUTATIONAL SCIENCE, YSC 2016, 2016, 101 : 407 - 415
  • [7] Mobility Graphs: Visual Analysis of Mass Mobility Dynamics via Spatio-Temporal Graphs and Clustering
    von Landesberger, Tatiana
    Brodkorb, Felix
    Roskosch, Philipp
    Andrienko, Natalia
    Andrienko, Gennady
    Kerren, Andreas
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2016, 22 (01) : 11 - 20
  • [8] MotionGlyphs: Visual Abstraction of Spatio-Temporal Networks in Collective Animal Behavior
    Cakmak, E.
    Schaefer, H.
    Buchmueller, J.
    Fuchs, J.
    Schreck, T.
    Jordan, A.
    Keim, D.
    COMPUTER GRAPHICS FORUM, 2020, 39 (03) : 63 - 75
  • [9] DBNetVizor: Visual Analysis of Dynamic Basketball Player Networks
    Chang, Baofeng
    Sun, Guodao
    Zhu, Sujia
    Jiang, Qi
    Xia, Wang
    Tang, Jingwei
    Liang, Ronghua
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 591 - 605
  • [10] Visual Matrix Clustering of Social Networks
    Wong, Pak Chung
    Mackey, Patrick
    Foote, Harlan
    May, Richard
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2013, 33 (04) : 88 - 96