Convergence properties of a class of nonlinear conjugate gradient methods

被引:8
|
作者
Liu, Jinkui [1 ]
机构
[1] Chongqing Three Gorges Univ, Sch Math & Stat, Chongqing, Peoples R China
关键词
Unconstrained optimization; Conjugate gradient method; Strong Wolfe line search; Descent property; Convergence property; UNCONSTRAINED OPTIMIZATION; GLOBAL CONVERGENCE; LINE SEARCH; DESCENT; MINIMIZATION;
D O I
10.1016/j.cor.2013.05.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Conjugate gradient methods are a class of important methods for unconstrained optimization problems, especially when the dimension is large. In this paper, we study a class of modified conjugate gradient methods based on the famous LS conjugate gradient method, which produces a sufficient descent direction at each iteration and converges globally provided that the line search satisfies the strong Wolfe condition. At the same time, a new specific nonlinear conjugate gradient method is constructed. Our numerical results show that the new method is very efficient for the given test problems by comparing with the famous LS method, PRP method and CG-DESCENT method. (c) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2656 / 2661
页数:6
相关论文
共 50 条
  • [41] Global convergence of a modified LS nonlinear conjugate gradient method
    Liu, Jinkui
    Feng, Yuming
    CEIS 2011, 2011, 15
  • [42] Global convergence of conjugate gradient method
    Shi, Zhen-Jun
    Guo, Jinhua
    OPTIMIZATION, 2009, 58 (02) : 163 - 179
  • [43] A new class of Conjugate Gradient Methods with extended Nonmonotone Line Search
    Liu, Hailin
    Li, Xiaoyong
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 : 147 - 154
  • [44] A new two-parameter family of nonlinear conjugate gradient methods
    Sellami, B.
    Laskri, Y.
    Benzine, R.
    OPTIMIZATION, 2015, 64 (04) : 993 - 1009
  • [45] A new globalization technique for nonlinear conjugate gradient methods for nonconvex minimization
    Zhang, Li
    Li, Junli
    APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (24) : 10295 - 10304
  • [46] Multi-step nonlinear conjugate gradient methods for unconstrained minimization
    John A. Ford
    Yasushi Narushima
    Hiroshi Yabe
    Computational Optimization and Applications, 2008, 40 : 191 - 216
  • [47] Multi-step nonlinear conjugate gradient methods for unconstrained minimization
    Ford, John A.
    Narushima, Yasushi
    Yabe, Hiroshi
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2008, 40 (02) : 191 - 216
  • [48] New Hybrid Conjugate Gradient and Broyden-Fletcher-Goldfarb-Shanno Conjugate Gradient Methods
    Stanimirovic, Predrag S.
    Ivanov, Branislav
    Djordjevic, Snezana
    Brajevic, Ivona
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2018, 178 (03) : 860 - 884
  • [49] A Hybrid of DL and WYL Nonlinear Conjugate Gradient Methods
    Yao, Shengwei
    Qin, Bin
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [50] Two fundamental convergence theorems for nonlinear conjugate gradient methods and their applications
    Han Jiye
    Liu Guanghui
    Sun Defeng
    Yin Hongxia
    Acta Mathematicae Applicatae Sinica, 2001, 17 (1) : 38 - 46