On the asymptotic behaviour of solution for the generalized double dispersion equation

被引:36
作者
Wang, Shubin [1 ]
Da, Fang [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Peoples R China
基金
中国国家自然科学基金;
关键词
double dispersion equation; decay estimates; global existence; asymptotic behaviour; 35L30; 35Q30; 76B15; CAUCHY-PROBLEM; WAVE-EQUATION; EXISTENCE; STABILITY; SPACE;
D O I
10.1080/00036811.2012.661044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the Cauchy problem for the generalized double dispersion equation in n-dimensional space. We establish the decay estimates of solution to the corresponding linear equation. Under smallness condition on the initial data, we prove the global existence and asymptotic behaviour of the small amplitude solution in the time-weighted Sobolev space by the contraction mapping principle.
引用
收藏
页码:1179 / 1193
页数:15
相关论文
共 20 条
[1]  
[Anonymous], [No title captured]
[2]  
[Anonymous], 1976, GRUNDLEHREN MATH WIS
[3]  
[Anonymous], Q APPL MATH
[4]   Initial boundary value problem of the generalized cubic double dispersion equation [J].
Chen, GW ;
Wang, YP ;
Wang, SB .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 299 (02) :563-577
[5]   Remarks on modified improved Boussinesq equations in one space dimension [J].
Cho, Yonggeun ;
Ozawa, Tohru .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2006, 462 (2071) :1949-1963
[6]   ON THE EXISTENCE AND THE ASYMPTOTIC STABILITY OF SOLUTIONS FOR LINEARLY VISCOELASTIC SOLIDS [J].
FABRIZIO, M ;
LAZZARI, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 116 (02) :139-152
[7]   Selfsimilar profiles in large time asymptotics of solutions to damped wave equations [J].
Karch, G .
STUDIA MATHEMATICA, 2000, 143 (02) :175-197
[8]   On nonlinear Schrodinger equations .2. H-S-solutions and unconditional well-posedness [J].
Kato, T .
JOURNAL D ANALYSE MATHEMATIQUE, 1995, 67 :281-306
[9]   On the exponential stability of linear viscoelasticity and thermoviscoelasticity [J].
Liu, ZY ;
Zheng, SM .
QUARTERLY OF APPLIED MATHEMATICS, 1996, 54 (01) :21-31
[10]  
Matsumura A., 1976, Publ. Res. Inst. Math. Sci, V12, P169, DOI DOI 10.2977/PRIMS/1195190962