Tunable and Broadband Plasmonic Absorption via Dispersible Nanoantennas with Sub-10 nm Gaps

被引:9
|
作者
Mangelson, Bryan F. [1 ,3 ]
Park, Daniel J. [1 ,3 ]
Ku, Jessie C. [1 ,2 ,3 ]
Osberg, Kyle D. [1 ,2 ,3 ]
Schatz, George C. [1 ,3 ]
Mirkin, Chad A. [1 ,2 ,3 ]
机构
[1] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[2] Northwestern Univ, Dept Mat Sci & Engn, Evanston, IL 60208 USA
[3] Northwestern Univ, Int Inst Nanotechnol, Evanston, IL 60208 USA
关键词
plasmonics; hotspots; nanoantennas; nanorods; on-wire lithography; ON-WIRE-LITHOGRAPHY; COLORIMETRIC DETECTION; TRANSPORT JUNCTIONS; OPTICAL-PROPERTIES; NANOPARTICLES; HYBRIDIZATION; RESONANCE; SIZE;
D O I
10.1002/smll.201202787
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Plasmonic nanoparticles have traditionally been associated with relatively narrow absorption profiles. But, for many of the most exciting potential applications for these particles, such as solar energy applications, broadband absorption is desirable. By utilizing on-wire lithography, nanostructures which absorb light through the visible and near-IR portions of the electromagnetic spectrum can be synthesized. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:2250 / 2254
页数:5
相关论文
共 50 条
  • [1] Dual-width plasmonic gratings with sub-10 nm gaps for biosensor applications
    Bauman, Stephen J.
    Darweesh, Ahmad A.
    Herzog, Joseph B.
    NANOENGINEERING: FABRICATION, PROPERTIES, OPTICS, AND DEVICES XIII, 2016, 9927
  • [2] Free-standing sub-10 nm nanostencils for the definition of gaps in plasmonic antennas
    Duan, Huigao
    Hu, Hailong
    Hui, Hui Kim
    Shen, Zexiang
    Yang, Joel K. W.
    NANOTECHNOLOGY, 2013, 24 (18)
  • [3] Plasmonic structures fabricated via nanomasking sub-10 nm lithography technique
    Bauman, Stephen J.
    Debu, Desalegn T.
    Herzog, Joseph B.
    NANOENGINEERING: FABRICATION, PROPERTIES, OPTICS, AND DEVICES XII, 2015, 9556
  • [4] Plasmonic Chiral Metamaterials with Sub-10 nm Nanogaps
    Zhang, Wei
    Ai, Bin
    Gu, Panpan
    Guan, Yuduo
    Wang, Zengyao
    Xiao, Zifan
    Zhang, Gang
    ACS NANO, 2021, 15 (11) : 17657 - 17667
  • [5] Plasmonic Coupling of Ag Nanoparticle Arrays with sub-10 nm Gaps: Near-Field Origins
    Lin, B. -Y.
    Hsu, H. -C.
    Teng, C. -H.
    Chang, H. -C.
    Wang, Y. -L.
    Wang, J. -K.
    2009 CONFERENCE ON LASERS AND ELECTRO-OPTICS AND QUANTUM ELECTRONICS AND LASER SCIENCE CONFERENCE (CLEO/QELS 2009), VOLS 1-5, 2009, : 2363 - +
  • [6] Nanotube-Bridged Wires with Sub-10 nm Gaps
    Lee, Byung Yang
    Heo, Kwang
    Schmucker, Abrin L.
    Jin, Hye Jun
    Lim, Jong Kuk
    Kim, Taekyeong
    Lee, Haemi
    Jeon, Ki-Seok
    Suh, Yung Doug
    Mirkin, Chad A.
    Hong, Seunghun
    NANO LETTERS, 2012, 12 (04) : 1879 - 1884
  • [7] Sub-10 nm particle trapping enabled by a plasmonic dark mode
    Xiao, Fajun
    Ren, Yuxuan
    Shang, Wuyun
    Zhu, Weiren
    Han, Lei
    Lu, Hua
    Mei, Ting
    Premaratne, Malin
    Zhao, Jianlin
    OPTICS LETTERS, 2018, 43 (14) : 3413 - 3416
  • [8] Sub-10 nm porous alumina templates to produce sub-10 nm nanowires
    Resende, Pedro M.
    Martin-Gonzalez, Marisol
    MICROPOROUS AND MESOPOROUS MATERIALS, 2019, 284 (198-204) : 198 - 204
  • [9] Sub-10 nm Au-Ag Heterogeneous Plasmonic Nanogaps
    Gu, Panpan
    Zheng, Tianxing
    Zhang, Wei
    Ai, Bin
    Zhao, Zhiyuan
    Zhang, Gang
    ADVANCED MATERIALS INTERFACES, 2020, 7 (06):
  • [10] Highly Raman-enhancing substrates based on silver nanoparticle arrays with tunable sub-10 nm gaps
    Wang, HH
    Liu, CY
    Wu, SB
    Liu, NW
    Peng, CY
    Chan, TH
    Hsu, CF
    Wang, JK
    Wang, YL
    ADVANCED MATERIALS, 2006, 18 (04) : 491 - +